编辑这个页面须要登录或更高权限!

NumPy 数组添加和删除

数组添加和删除操作,常用的函数如下:

函数元素及描述
resize返回指定形状的新数组
append将值添加到数组末尾
insert沿指定轴将值插入到指定下标之前
delete删掉某个轴的子数组,并返回删除后的新数组
unique查找数组内的唯一元素

numpy.resize

numpy.resize 函数返回指定大小的新数组。

如果新数组大小大于原始大小,则包含原始数组中的元素的副本。

numpy.resize(arr, shape)

参数说明:

arr:要修改大小的数组shape:返回数组的新形状

import numpy as np
a = np.array([[1,2,3,4,5,6,7,8],[4,5,6,7,8,9,10,11]])
print ('第一个数组:')
print (a)
print ('\n')
print ('第一个数组的形状:')
print (a.shape)
print ('\n')
b = np.resize(a, (4,2))
print ('第二个数组:')
print (b)
print ('\n')
print ('第二个数组的形状:')
print (b.shape)
print ('\n')
 # 要注意 a 的第一行在 b 中重复出现,因为尺寸变大了
print ('修改第二个数组的大小:')
b = np.resize(a,(5,5))
print (b)

输出结果为:

第一个数组:
[[ 1 2 3 4 5 6 7 8]
 [ 4 5 6 7 8 9 10 11]]

第一个数组的形状:
(2, 8)

第二个数组:
[[1 2]
 [3 4]
 [5 6]
 [7 8]]

第二个数组的形状:
(4, 2)

修改第二个数组的大小:
[[ 1 2 3 4 5]
 [ 6 7 8 4 5]
 [ 6 7 8 9 10]
 [11 1 2 3 4]
 [ 5 6 7 8 4]]

numpy.append

numpy.append 函数在数组的末尾添加值。 追加操作会分配整个数组,并把原来的数组复制到新数组中。 此外,输入数组的维度必须匹配否则将生成ValueError。

append 函数返回的始终是一个一维数组。

numpy.append(arr, values, axis=None)

参数说明:

arr:输入数组values:要向arr添加的值,需要和arr形状相同(除了要添加的轴)axis:默认为 None。当axis无定义时,是横向加成,返回总是为一维数组!当axis有定义的时候,分别为0和1的时候。当axis有定义的时候,分别为0和1的时候(列数要相同)。当axis为1时,数组是加在右边(行数要相同)。

import numpy as np
a = np.array([[1,2,3,4,5,6,7,8],[4,5,6,7,8,9,10,11]])
print ('第一个数组:')
print (a)
print ('\n')
print ('向数组添加元素:')
print (np.append(a, [7,8,9]))
print ('\n')
print ('沿轴 0 添加元素:')
print (np.append(a, [[1,2,3,4,5,6,7,8]],axis = 0))
print ('\n')
print ('沿轴 1 添加元素:')
print (np.append(a, [[5,5,5,5,5,5,5],[7,8,9,7,8,9,1]],axis = 1))

输出结果为:

第一个数组:
[[ 1 2 3 4 5 6 7 8]
 [ 4 5 6 7 8 9 10 11]]

向数组添加元素:
[ 1 2 3 4 5 6 7 8 4 5 6 7 8 9 10 11 7 8 9]

沿轴 0 添加元素:
[[ 1 2 3 4 5 6 7 8]
 [ 4 5 6 7 8 9 10 11]
 [ 1 2 3 4 5 6 7 8]]

沿轴 1 添加元素:
[[ 1 2 3 4 5 6 7 8 5 5 5 5 5 5 5]
 [ 4 5 6 7 8 9 10 11 7 8 9 7 8 9 1]]

numpy.insert

numpy.insert 函数在给定索引之前,沿给定轴在输入数组中插入值。

如果值的类型转换为要插入,则它与输入数组不同。 插入没有原地的,函数会返回一个新数组。 此外,如果未提供轴,则输入数组会被展开。

numpy.insert(arr, obj, values, axis)

参数说明:

arr:输入数组obj:在其之前插入值的索引values:要插入的值axis:沿着它插入的轴,如果未提供,则输入数组会被展开

import numpy as np
a = np.array([[1,2],[3,4],[5,6]])
 
print ('第一个数组:')
print (a)
print ('\n')
 
print ('未传递 Axis 参数。 在插入之前输入数组会被展开。')
print (np.insert(a,3,[11,12]))
print ('\n')
print ('传递了 Axis 参数。 会广播值数组来配输入数组。')
 
print ('沿轴 0 广播:')
print (np.insert(a,1,[11],axis = 0))
print ('\n')
 
print ('沿轴 1 广播:')
print (np.insert(a,1,11,axis = 1))

输出结果如下:

第一个数组:
[[1 2]
 [3 4]
 [5 6]]

未传递 Axis 参数。 在插入之前输入数组会被展开。
[ 1 2 3 11 12 4 5 6]
传递了 Axis 参数。 会广播值数组来配输入数组。

沿轴 0 广播:
[[ 1 2]
 [11 11]
 [ 3 4]
 [ 5 6]]

沿轴 1 广播:
[[ 1 11 2]
 [ 3 11 4]
 [ 5 11 6]]

numpy.delete

numpy.delete 函数返回从输入数组中删除指定子数组的新数组。 与 insert() 函数的情况一样,如果未提供轴参数,则输入数组将展开。

Numpy.delete(arr, obj, axis)

参数说明:

arr:输入数组obj:可以被切片,整数或者整数数组,表明要从输入数组删除的子数组axis:沿着它删除给定子数组的轴,如果未提供,则输入数组会被展开

import numpy as np
 
a = np.arange(12).reshape(3,4)
 
print ('第一个数组:')
print (a)
print ('\n')
 
print ('未传递 Axis 参数。 在插入之前输入数组会被展开。')
print (np.delete(a,5))
print ('\n')
 
print ('删除第二列:')
print (np.delete(a,1,axis = 1))
print ('\n')
 
print ('包含从数组中删除的代替值的切片:')
a = np.array([1,2,3,4,5,6,7,8,9,10])
print (np.delete(a, np.s_[::2]))

输出结果为:

第一个数组:
[[ 0 1 2 3]
 [ 4 5 6 7]
 [ 8 9 10 11]]

未传递 Axis 参数。 在插入之前输入数组会被展开。
[ 0 1 2 3 4 6 7 8 9 10 11]

删除第二列:
[[ 0 2 3]
 [ 4 6 7]
 [ 8 10 11]]

包含从数组中删除的代替值的切片:
[ 2 4 6 8 10]

numpy.unique

numpy.unique 函数用于去除数组中的重复元素。

numpy.unique(arr, return_index, return_inverse, return_counts)

arr:输入数组,如果不是一维数组则会展开return_index:如果为true,返回新列表元素在旧列表中的位置(下标),并以列表形式储return_inverse:如果为true,返回旧列表元素在新列表中的位置(下标),并以列表形式储return_counts:如果为true,返回去重数组中的元素在原数组中的出现次数

import numpy as np
 
a = np.array([5,2,6,2,7,5,6,8,2,9])
 
print ('第一个数组:')
print (a)
print ('\n')
 
print ('第一个数组的去重值:')
u = np.unique(a)
print (u)
print ('\n')
 
print ('去重数组的索引数组:')
u,indices = np.unique(a, return_index = True)
print (indices)
print ('\n')
 
print ('我们可以看到每个和原数组下标对应的数值:')
print (a)
print ('\n')
 
print ('去重数组的下标:')
u,indices = np.unique(a,return_inverse = True)
print (u)
print ('\n')
 
print ('下标为:')
print (indices)
print ('\n')
 
print ('使用下标重构原数组:')
print (u[indices])
print ('\n')
 
print ('返回去重元素的重复数量:')
u,indices = np.unique(a,return_counts = True)
print (u)
print (indices)

输出结果为:

第一个数组:
[5 2 6 2 7 5 6 8 2 9]

第一个数组的去重值:
[2 5 6 7 8 9]

去重数组的索引数组:
[1 0 2 4 7 9]

我们可以看到每个和原数组下标对应的数值:
[5 2 6 2 7 5 6 8 2 9]

去重数组的下标:
[2 5 6 7 8 9]

下标为:
[1 0 2 0 3 1 2 4 0 5]

使用下标重构原数组:
[5 2 6 2 7 5 6 8 2 9]

返回去重元素的重复数量:
[2 5 6 7 8 9]
[3 2 2 1 1 1]