赞
踩
目录
⑤、再运行KafkaConsumerTest程序 编辑编辑
⑥、再回到KafkaProducerTest.java运行该程序
类似scala,mysql等,命令行是初学者操作Kafka的基本方式,kafka的模式是生产者消费者模式,他们之间通讯是通过,一个公共频道完成
kafka-topics.sh --create --topic itcasttopic --partitions 3 --replication-factor 2 --zookeeper master:2181,slave1:2181,slave2:2181
--create --topic itcasttopic: 创建主题名称是 itcasttopic
--partitions 3 : 分区数是3
--replication-factor 2:副本数是 2
--zookeeper master:2181,slave1:2181,slave2:2181 : zookeeper:服务的IP地址和端口
##删除主题##
$ bin/kafka-topics.sh --delete -zookeeper master:2181,slave1:2181,slave2:2181 --topic itcasttopic
kafka-console-producer.sh --broker-list master:9092,slave1:9092,slave2:9092 --topic itcasttopic
(上面是等待输入光标在闪烁)
转换到slave1
kafka-console-consumer.sh --from-beginning --topic itcasttopic --bootstrap-server master:90
生产发送数据
消费接收数据
修改配置:
在工程里面的pom.xml文件添加Kafka依赖
(Kafka依赖需要与虚拟机安装的Kafka版本保持一致)
- <properties>
- <scala.version>2.11.8</scala.version>
- <hadoop.version>2.7.4</hadoop.version>
- <spark.version>2.3.2</spark.version>
- </properties>
-
-
-
- <build>
- <plugins>
- <plugin>
- <groupId>org.apache.maven.plugins</groupId>
- <artifactId>maven-compiler-plugin</artifactId>
- <configuration>
- <source>1.8</source>
- <target>1.8</target>
- </configuration>
- </plugin>
- </plugins>
- </build>
-
-
-
- <!--kafka-->
- <dependency>
- <groupId>org.apache.kafka</groupId>
- <artifactId>kafka-clients</artifactId>
- <version>2.0.0</version>
- </dependency>
-
- <dependency>
- <groupId>org.apache.kafka</groupId>
- <artifactId>kafka-streams</artifactId>
- <version>2.0.0</version>
- </dependency>
在工程的java目录下创建KafkaProducerTest文件
- import org.apache.kafka.clients.producer.KafkaProducer;
- import org.apache.kafka.clients.producer.ProducerRecord;
- import java.util.Properties;
-
- public class KafkaProducerTest {
- public static void main(String[] args){
- Properties props = new Properties();
- //
- props.put("bootstrap.servers","master:9092,slave1:9092,slave2:9092");
- //
- props.put("acks","all");
- //
- props.put("retries",0);
- //
- props.put("batch.size",16384);
- //
- props.put("linger.ms",1);
- //
- props.put("buffer.memory",33554432);
- //
- props.put("key.serializer","org.apache.kafka.common.serialization.StringSerializer");
- //
- props.put("value.serializer","org.apache.kafka.common.serialization.StringSerializer");
- //
- KafkaProducer<String,String> producer=new KafkaProducer<String, String>(props);
- for (int i=0; i<50; i++){
- producer.send(new ProducerRecord<String, String>("itcasttopic",Integer.toString(i),"hello world [2] -"+i));
- }
- producer.close();
- }
}
Slave1上出现的结果
- import org.apache.kafka.clients.consumer.ConsumerRecord;
- import org.apache.kafka.clients.consumer.ConsumerRecords;
- import org.apache.kafka.clients.consumer.KafkaConsumer;
- import org.apache.kafka.clients.producer.Callback;
- import org.apache.kafka.clients.producer.KafkaProducer;
- import org.apache.kafka.clients.producer.ProducerRecord;
- import org.apache.kafka.clients.producer.RecordMetadata;
-
- import java.util.Arrays;
- import java.util.Properties;
-
- public class KafkaConsumerTest {
- public static void main(String[] args) {
- // 1、准备配置文件
- Properties props = new Properties();
- // 2、指定Kafka集群主机名和端口号
- props.put("bootstrap.servers", "master:9092,slave1:9092,slave2:9092");
- // 3、指定消费者组ID,在同一时刻同一消费组中只有一个线程可以去消费一个分区数据,不同的消费组可以去消费同一个分区的数据。
- props.put("group.id", "itcasttopic");
- // 4、自动提交偏移量
- props.put("enable.auto.commit", "true");
- // 5、自动提交时间间隔,每秒提交一次
- props.put("auto.commit.interval.ms", "1000");
- props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
- props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
- KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<String, String>(props);
- // 6、订阅数据,这里的topic可以是多个
- kafkaConsumer.subscribe(Arrays.asList("itcasttopic"));
- // 7、获取数据
- while (true) {
- //每隔100ms就拉去一次
- ConsumerRecords<String, String> records = kafkaConsumer.poll(100);
- for (ConsumerRecord<String, String> record : records) {
- System.out.printf("topic = %s,offset = %d, key = %s, value = %s%n", record.topic(), record.offset(), record.key(), record.value());
- }
- }
- }
-
- }
运行KafkaP roducerTest程序
(查看KafkaConsumerTest的运行框)由以下图可以看出生产者生产消息成功被终端消费
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。