赞
踩
目录
https://arxiv.org/pdf/1703.04009.pdf
发布时间:2017 年 3 月 11 日
(Google翻译)
社交媒体上自动仇恨言论检测的一个关键挑战是将仇恨言论与其他攻击性语言实例分开。词汇检测方法的精度往往较低,因为它们将所有包含特定术语的消息归类为仇恨言论,而之前使用监督学习的工作未能区分这两个类别。我们使用众包仇恨言论词典来收集包含仇恨言论关键词的推文。我们使用众包将这些推文的样本标记为三类:包含仇恨言论、仅包含冒犯性语言以及两者均不包含的那些。我们训练一个多类分类器来区分这些不同的类别。对预测和错误的仔细分析表明,我们何时可以可靠地将仇恨言论与其他冒犯性语言区分开来,以及何时更难区分。我们发现种族主义和恐同推文更有可能被归类为仇恨言论,而性别歧视推文通常被归类为冒犯性言论。没有明确仇恨关键词的推文也更难分类
ella笔记:
本文数据集特点
====================================
--------------------------------------------------------------
[1]Facebook 的政策可在此处找到:www.facebook.com/communitystandards#hate-speech. 可以在此处找到 Twitter 的政策:support.twitter.com/articles/20175050.
====================================
====================================
====================================
--------------------------------------------------------------
[3] 我们验证了词干分析器没有通过将关键术语减少到相同的词干来删除重要信息
====================================
====================================
--------------------------------------------------------------
[4] 如果必须使用词典,我们建议具有更高精确度的较小词典优于具有更高召回率的较大词典。我们在此处提供了更受限制的 Hatebase 词典版本:https://github.com/t-davidson/hate-speech-and-offensive-language。
====================================
References
Bird, S.; Loper, E.; and Klein, E. 2009. Natural Language Processing with Python. O’Reilly Media Inc.
Burnap, P., and Williams, M. L. 2015. Cyber hate speech on twitter: An application of machine classification and statistical modeling for policy and decision making. Policy & Internet 7(2):223– 242.
Djuric, N.; Zhou, J.; Morris, R.; Grbovic, M.; Radosavljevic, V.; and Bhamidipati, N. 2015. Hate speech detection with comment embeddings. In WWW, 29–30.
Gitari, N. D.; Zuping, Z.; Damien, H.; and Long, J. 2015. A lexicon-based approach for hate speech detection. International Journal of Multimedia and Ubiquitous Engineering 10:215–230.
Hutto, C. J., and Gilbert, E. 2014. VADER: A parsimonious rulebased model for sentiment analysis of social media text. In ICWSM.
Jacobs, J. B., and Potter, K. 2000. Hate crimes: Criminal Law and Identity Politics. Oxford University Press.
Kwok, I., and Wang, Y. 2013. Locate the hate: Detecting tweets against blacks. In AAAI.
Nobata, C.; Tetreault, J.; Thomas, A.; Mehdad, Y.; and Chang, Y. 2016. Abusive language detection in online user content. In WWW, 145–153.
Pedregosa, F., et al. 2011. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12:2825–2830.
Silva, L. A.; Mondal, M.; Correa, D.; Benevenuto, F.; and Weber, I. 2016. Analyzing the targets of hate in online social media. In ICWSM, 687–690.
Walker, S. 1994. Hate Speech: The History of an American Controversy. U of Nebraska Press.
Wang, W.; Chen, L.; Thirunarayan, K.; and Sheth, A. P. 2014. Cursing in english on twitter. In CSCW, 415–425.
Warner, W., and Hirschberg, J. 2012. Detecting hate speech on the world wide web. In LSM, 19–26.
Waseem, Z., and Hovy, D. 2016. Hateful symbols or hateful people? predictive features for hate speech detection on twitter. In SRW@HLT-NAACL, 88–93.
Waseem, Z. 2016. Are you a racist or am i seeing things? annotator influence on hate speech detection on twitter. In Proceedings of the First Workshop on NLP and CSS, 138–142.
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。