赞
踩
网络结构的亮点:
通过堆叠多个3*3的卷积核来替代大尺度卷积核(减少所需参数)
论文中提到,可以通过堆叠两个3*3的卷积核替代5*5的卷积核,堆叠三个3*3的卷积核替代7*7的卷积核
拥有相同的感受野
什么是感受野呢?
在卷积神经网络中,决定某一层输出结果中 一个元素 所对应的输入层的区域大小
被称做感受野
通俗的解释是,输出feature map(特征矩阵)上的一个单元对应输入层上区域的大小
(9-3+2*0)/2+1=4
(4-2+2*0)/2+1=2
第三层(最上面一层)中一个单元在第二层的感受野就是一个2*2区域,在第一层的感受野就是一个5*5大小
感受野计算公式:
F(i) = (F(i+1)-1) * stride+Ksize
F(i)为第i层感受野
F(i+1)表示上一层的感受野
stride 为第i层步距
Ksize为卷积核或池化核尺寸
Feature map:F=1
Pool1:F=(1-1)*2+2=2
Conv1:F=(2-1)*2+3=5
采用三个3*3的卷积核来替代一个7*7的卷积核原理
feature map : F=1
Conv3*3(3):F = (1-1)*1+3=3
Conv3*3(2):F = (3-1)*1+3=5
Conv3*3(1):F = (5-1)*1+3=7
这样特征矩阵的一个单元通过三个3*3卷积核的堆叠,所对应的感受野与一个7*7卷积核对应的感受野是一样大小的,都是7*7大小。
先大概看一下网络结构:
首先导入一张224*224大小的RGB图片,
然后是两个3*3的卷积层,然后最大下采样
再通过两个3*3的卷积层,然后最大下采样
然后三个3*3的卷积层,然后最大下采样
然后三个3*3的卷积层,然后最大下采样
然后三个3*3的卷积层,然后最大下采样
然后三个全连接层
softmax处理
一共13层卷积层 加上 3个全连接层
其中卷积的步距为1 padding为1
通过卷积操作,特征图的高度和宽度是不变的 N=(3-3+2*1)/1+1=3 输入是3*3 输出还是3*3
池化核的大小为2 步距也为2
通过池化操作,只将原来特征矩阵的高和宽转变成原来的一半 ,不改变深度
卷积核的个数是输出特征图的深度
三层全连接层:
前两个全连接层用了Relu激活函数
最后一层的1000个节点是不需要Relu激活函数,最后是通过softmax层进行激活
网络实现
将VGG网络分成两个部分:
第一个部分是提取特征网络结构(全连接层之前的模块)
第二个部分是分类网络结构(三层全连接层)
网络结构模块
- import torch.nn as nn
- import torch
-
- # official pretrain weights
- model_urls = {
- 'vgg11': 'https://download.pytorch.org/models/vgg11-bbd30ac9.pth',
- 'vgg13': 'https://download.pytorch.org/models/vgg13-c768596a.pth',
- 'vgg16': 'https://download.pytorch.org/models/vgg16-397923af.pth',
- 'vgg19': 'https://download.pytorch.org/models/vgg19-dcbb9e9d.pth'
- }
-
-
- class VGG(nn.Module):
- def __init__(self, features, num_classes=1000, init_weights=False):
- super(VGG, self).__init__()
- self.features = features
- self.classifier = nn.Sequential(#三层全连接层
- nn.Linear(512*7*7, 4096),#展平操作
- nn.ReLU(True),
- nn.Dropout(p=0.5),
- nn.Linear(4096, 4096),
- nn.ReLU(True),
- nn.Dropout(p=0.5),
- nn.Linear(4096, num_classes)
- )
- if init_weights:
- self._initialize_weights()
-
- def forward(self, x):
- # N x 3 x 224 x 224
- x = self.features(x)
- # N x 512 x 7 x 7
- x = torch.flatten(x, start_dim=1)
- # N x 512*7*7
- x = self.classifier(x)
- return x
-
- def _initialize_weights(self):
- for m in self.modules():#遍历网络的每一个子模块,也就是网络的每一层
- if isinstance(m, nn.Conv2d):#如果是卷积层
- # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
- nn.init.xavier_uniform_(m.weight)#用xavier方法初始化卷积核的权重
- if m.bias is not None:#如果采用偏置
- nn.init.constant_(m.bias, 0)#默认初始化为0
- elif isinstance(m, nn.Linear):#如果是全连接层instance(实例)
- nn.init.xavier_uniform_(m.weight)
- # nn.init.normal_(m.weight, 0, 0.01)
- nn.init.constant_(m.bias, 0)
-
-
- def make_features(cfg: list):#提取特征网络,传入的就是配置变量,是list类型
- layers = [] #空列表,用来存放我们创建的每一层
- in_channels = 3
- for v in cfg:
- if v == "M":
- layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
- else:
- conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
- layers += [conv2d, nn.ReLU(True)]#将卷积层和Relu函数拼接在一起
- in_channels = v #输出之后特征矩阵的深度就是卷积核的个数
- return nn.Sequential(*layers)#Sequential(连续的)将列表通过非关键字参数的形式传入进去
-
-
- cfgs = {#字典文件 每一个key都对应模型的配置文件 vgg11对应的就是A配置 11层结构的网络
- 'vgg11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],#数字64这些代表卷积核的个数,M代表池化层
- 'vgg13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],#对应B配置 13层
- 'vgg16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],#对应D配置 16层
- 'vgg19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],#对应E配置,19层
- }
-
-
- def vgg(model_name="vgg16", **kwargs):#vgg函数,实例化网络
- assert model_name in cfgs, "Warning: model number {} not in cfgs dict!".format(model_name)
- cfg = cfgs[model_name]
-
- model = VGG(make_features(cfg), **kwargs)#VGG类 **对应的是可变长度的字典变量
- return model
网络训练模块
- import os
- import sys
- import json
-
- import torch
- import torch.nn as nn
- from torchvision import transforms, datasets
- import torch.optim as optim
- from tqdm import tqdm
-
- from model import vgg
-
-
- def main():
- device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
- print("using {} device.".format(device))
-
- data_transform = {
- "train": transforms.Compose([transforms.RandomResizedCrop(224),
- transforms.RandomHorizontalFlip(),
- transforms.ToTensor(),#tensor格式
- transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]),
- "val": transforms.Compose([transforms.Resize((224, 224)),
- transforms.ToTensor(),
- transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])}
-
- data_root = os.path.abspath(os.path.join(os.getcwd(), "../..")) # get data root path
- image_path = os.path.join(data_root, "data_set", "flower_data") # flower data set path
- assert os.path.exists(image_path), "{} path does not exist.".format(image_path)
- train_dataset = datasets.ImageFolder(root=os.path.join(image_path, "train"),
- transform=data_transform["train"])
- train_num = len(train_dataset)
-
- # {'daisy':0, 'dandelion':1, 'roses':2, 'sunflower':3, 'tulips':4}
- flower_list = train_dataset.class_to_idx
- cla_dict = dict((val, key) for key, val in flower_list.items())
- # write dict into json file
- json_str = json.dumps(cla_dict, indent=4)
- with open('class_indices.json', 'w') as json_file:
- json_file.write(json_str)
-
- batch_size = 32
- nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) # number of workers
- print('Using {} dataloader workers every process'.format(nw))
-
- train_loader = torch.utils.data.DataLoader(train_dataset,
- batch_size=batch_size, shuffle=True,
- num_workers=0)
-
- validate_dataset = datasets.ImageFolder(root=os.path.join(image_path, "val"),
- transform=data_transform["val"])
- val_num = len(validate_dataset)
- validate_loader = torch.utils.data.DataLoader(validate_dataset,
- batch_size=batch_size, shuffle=False,
- num_workers=0)
- print("using {} images for training, {} images for validation.".format(train_num,
- val_num))
-
- # test_data_iter = iter(validate_loader)
- # test_image, test_label = test_data_iter.next()
-
- model_name = "vgg16"
- net = vgg(model_name=model_name, num_classes=5, init_weights=True)
- net.to(device)
- loss_function = nn.CrossEntropyLoss()
- optimizer = optim.Adam(net.parameters(), lr=0.0001)
-
- epochs = 3
- best_acc = 0.0
- save_path = './{}Net.pth'.format(model_name)
- train_steps = len(train_loader)
- for epoch in range(epochs):
- # train
- net.train()
- running_loss = 0.0
- train_bar = tqdm(train_loader, file=sys.stdout)
- for step, data in enumerate(train_bar):
- images, labels = data
- optimizer.zero_grad()
- outputs = net(images.to(device))
- loss = loss_function(outputs, labels.to(device))
- loss.backward()
- optimizer.step()
-
- # print statistics
- running_loss += loss.item()
-
- train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1,
- epochs,
- loss)
-
- # validate
- net.eval()
- acc = 0.0 # accumulate accurate number / epoch
- with torch.no_grad():
- val_bar = tqdm(validate_loader, file=sys.stdout)
- for val_data in val_bar:
- val_images, val_labels = val_data
- outputs = net(val_images.to(device))
- predict_y = torch.max(outputs, dim=1)[1]
- acc += torch.eq(predict_y, val_labels.to(device)).sum().item()
-
- val_accurate = acc / val_num
- print('[epoch %d] train_loss: %.3f val_accuracy: %.3f' %
- (epoch + 1, running_loss / train_steps, val_accurate))
-
- if val_accurate > best_acc:
- best_acc = val_accurate
- torch.save(net.state_dict(), save_path)
-
- print('Finished Training')
-
-
- if __name__ == '__main__':
- main()
训练结果
预测模块
- import os
- import json
-
- import torch
- from PIL import Image
- from torchvision import transforms
- import matplotlib.pyplot as plt
-
- from model import vgg
-
-
- def main():
- device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
-
- data_transform = transforms.Compose(
- [transforms.Resize((224, 224)),
- transforms.ToTensor(),
- transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
-
- # load image
- img_path = "../tulip.jpg"
- assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path)
- img = Image.open(img_path)
- plt.imshow(img)
- # [N, C, H, W]
- img = data_transform(img)
- # expand batch dimension
- img = torch.unsqueeze(img, dim=0)
-
- # read class_indict
- json_path = './class_indices.json'
- assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path)
-
- with open(json_path, "r") as f:
- class_indict = json.load(f)
-
- # create model
- model = vgg(model_name="vgg16", num_classes=5).to(device)
- # load model weights
- weights_path = "./vgg16Net.pth"
- assert os.path.exists(weights_path), "file: '{}' dose not exist.".format(weights_path)
- model.load_state_dict(torch.load(weights_path, map_location=device))
-
- model.eval()
- with torch.no_grad():
- # predict class
- output = torch.squeeze(model(img.to(device))).cpu()
- predict = torch.softmax(output, dim=0)
- predict_cla = torch.argmax(predict).numpy()
-
- print_res = "class: {} prob: {:.3}".format(class_indict[str(predict_cla)],
- predict[predict_cla].numpy())
- plt.title(print_res)
- for i in range(len(predict)):
- print("class: {:10} prob: {:.3}".format(class_indict[str(i)],
- predict[i].numpy()))
- plt.show()
-
-
- if __name__ == '__main__':
- main()
预测结果
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。