赞
踩
代码:
- # -*- coding: utf-8 -*-
- # @Time : 2023-07-14 14:57
- # @Author : yuer
- # @FileName: exercise05.py
- # @Software: PyCharm
- import matplotlib.pyplot as plt
- import torch
-
- # x,y是3行1列的矩阵,所以在[]中要分为3个[]
- x_data = torch.tensor([[1.0], [2.0], [3.0]])
- y_data = torch.tensor([[2.0], [4.0], [6.0]])
-
-
- class LinearModel(torch.nn.Module):
- def __init__(self):
- super(LinearModel, self).__init__()
- self.linear = torch.nn.Linear(1, 1)
- # 1,1分别代表x,y的维度(列数)
-
- def forward(self, x):
- y_pred = self.linear(x)
- return y_pred
-
-
- model = LinearModel()
- criterion = torch.nn.MSELoss(True) # 计算loss
- optimizer = torch.optim.Rprop(model.parameters(), lr=0.01) # 计算最优w,b
-
- epoch_list = []
- loss_list = []
-
- for epoch in range(100):
- y_pred = model(x_data)
- loss = criterion(y_pred, y_data)
- print(epoch, loss.item())
- epoch_list.append(epoch)
- loss_list.append(loss.item())
-
- optimizer.zero_grad() # 清空梯度
- loss.backward() # 反馈算梯度并更新
- optimizer.step() # 更新w,b的值
-
- print('w=', model.linear.weight.item())
- print('b=', model.linear.bias.item())
-
- x_test = torch.tensor([[4.0]])
- y_test = model(x_test)
- print('y_pred=', y_test)
-
- plt.plot(epoch_list, loss_list)
- plt.show()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。