赞
踩
转载自:
dd大牛的《背包九讲》 - 贺佐安 - 博客园www.cnblogs.com内容较长,建议收藏!
有
这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。
用子问题定义状态:即
这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前
注意
以上方法的时间和空间复杂度均为
先考虑上面讲的基本思路如何实现,肯定是有一个主循环
- for i=1..N
- for v=V..0
- f[v]=max{f[v],f[v-c[i]]+w[i]};
其中的
代码:
- #include<iostream>
- using namespace std;
-
- const int N = 1010;
-
- int v[N], w[N], dp[N];//dp[N][N]
-
- int main(){
- int n, m;
- cin >> n >> m;
- for(int i = 1; i <= n; i++){
- cin >> v[i] >> w[i];
- }
-
- for(int i = 1; i <= n; i++){
- // for(int j = 0; j <= m; j++){
- // if(j < v[i])
- // dp[i][j] = dp[i-1][j];
- // else
- // dp[i][j]=max(dp[i-1][j], dp[i-1][j-v[i]]+w[i]);
- // }
-
- for(int j = m; j >=v[i]; j--){
- dp[j] = max(dp[j], dp[j-v[i]]+w[i]);
- }
- }
- cout<<dp[m]<<endl;;
- return 0;
- }
01背包问题是最基本的背包问题,它包含了背包问题中设计状态、方程的最基本思想,另外,别的类型的背包问题往往也可以转换成01背包问题求解。故一定要仔细体会上面基本思路的得出方法,状态转移方程的意义,以及最后怎样优化的空间复杂度。
有
这个问题非常类似于01背包问题,所不同的是每种物品有无限件。也就是从每种物品的角度考虑,与它相关的策略已并非取或不取两种,而是有取0件、取1件、取2件……等很多种。如果仍然按照解01背包时的思路,令
将01背包问题的基本思路加以改进,得到了这样一个清晰的方法。这说明01背包问题的方程的确是很重要,可以推及其它类型的背包问题。但我们还是试图改进这个复杂度。
一个简单有效的优化
完全背包问题有一个很简单有效的优化,是这样的:若两件物品
转化为01背包问题求解
既然01背包问题是最基本的背包问题,那么我们可以考虑把完全背包问题转化为01背包问题来解。最简单的想法是,考虑到第
更高效的转化方法是:把第i种物品拆成费用为
- for i=1..N
- for v=0..V
- f[v]=max{f[v],f[v-c[i]]+w[i]};
你会发现,这个伪代码与01背包的伪代码只有v的循环次序不同而已。为什么这样一改就可行呢?首先想想为什么01背包中要按照
这个算法也可以以另外的思路得出。例如,基本思路中的状态转移方程可以等价地变形成这种形式:
完全背包问题也是一个相当基础的背包问题,它有两个状态转移方程,分别在“基本思路”以及“
有
这题目和完全背包问题很类似。基本的方程只需将完全背包问题的方程略微一改即可,因为对于第i种物品有
转化为01背包问题
另一种好想好写的基本方法是转化为01背包求解:把第i种物品换成
但是我们期望将它转化为01背包问题之后能够像完全背包一样降低复杂度。仍然考虑二进制的思想,我们考虑把第i种物品换成若干件物品,使得原问题中第i种物品可取的每种策略——取
方法是:将第i种物品分成若干件物品,其中每件物品有一个系数,这件物品的费用和价值均是原来的费用和价值乘以这个系数。使这些系数分别为
分成的这几件物品的系数和为
这样就将第i种物品分成了
多重背包问题同样有
这里我们看到了将一个算法的复杂度由
如果将前三种混合起来,也就是说,有的物品只可以取一次(01背包),有的物品可以取无限次(完全背包),有的物品可以取的次数有一个上限(多重背包)。应该怎么求解呢?
01背包与完全背包的混合
考虑到在前两种背包问题最后给出的伪代码只有一处不同,故如果只有两类物品:一类物品只能取一次,另一类物品可以取无限次,那么只需在对每个物品应用转移方程时,根据物品的类别选用顺序或逆序的循环即可,复杂度是
- for i=1..N
- if第i件物品是01背包
- for v=V..0
- f[v]=max{f[v],f[v-c[i]]+w[i]};
- else if第i件物品是完全背包
- for v=0..V
- f[v]=max{f[v],f[v-c[i]]+w[i]};
再加上多重背包
如果再加上有的物品最多可以取有限次,那么原则上也可以给出
有人说,困难的题目都是由简单的题目叠加而来的。这句话是否公理暂且存之不论,但它在本讲中已经得到了充分的体现。本来01背包、完全背包、多重背包都不是什么难题,但将它们简单地组合起来以后就得到了这样一道一定能吓倒不少人的题目。但只要基础扎实,领会三种基本背包问题的思想,就可以做到把困难的题目拆分成简单的题目来解决。
二维费用的背包问题是指:对于每件物品,具有两种不同的费用;选择这件物品必须同时付出这两种代价;对于每种代价都有一个可付出的最大值(背包容量)。问怎样选择物品可以得到最大的价值。设这两种代价分别为代价
费用加了一维,只需状态也加一维即可。设
物品总个数的限制
有时,“二维费用”的条件是以这样一种隐含的方式给出的:最多只能取
另外,如果要求“恰取
事实上,当发现由熟悉的动态规划题目变形得来的题目时,在原来的状态中加一纬以满足新的限制是一种比较通用的方法。希望你能从本讲中初步体会到这种方法。
有
这个问题变成了每组物品有若干种策略:是选择本组的某一件,还是一件都不选。也就是说设
使用一维数组的伪代码如下:
- for所有的组k
- for所有的i属于组k
- for v=V..0
- f[v]=max{f[v],f[v-c[i]]+w[i]}
另外,显然可以对每组中的物品应用完全背包中“一个简单有效的优化”。
分组的背包问题将彼此互斥的若干物品称为一个组,这建立了一个很好的模型。不少背包问题的变形都可以转化为分组的背包问题(例如 有依赖的背包问题),由分组的背包问题进一步可定义“泛化物品”的概念,十分有利于解题。
这种背包问题的物品间存在某种“依赖”的关系。也就是说,
这个问题由NOIP2006金明的预算方案一题扩展而来。遵从该题的提法,将不依赖于别的物品的物品称为“主件”,依赖于某主件的物品称为“附件”。由这个问题的简化条件可知所有的物品由若干主件和依赖于每个主件的一个附件集合组成。
按照背包问题的一般思路,仅考虑一个主件和它的附件集合。可是,可用的策略非常多,包括:一个也不选,仅选择主件,选择主件后再选择一个附件,选择主件后再选择两个附件……无法用状态转移方程来表示如此多的策略。(事实上,设有
考虑到所有这些策略都是互斥的(也就是说,你只能选择一种策略),所以一个主件和它的附件集合实际上对应于分组的背包问题中的一个物品组,每个选择了主件又选择了若干个附件的策略对应于这个物品组中的一个物品,其费用和价值都是这个策略中的物品的值的和。但仅仅是这一步转化并不能给出一个好的算法,因为物品组中的物品还是像原问题的策略一样多。
再考虑分组的背包问题中的一句话:可以对每组中的物品应用完全背包中“一个简单有效的优化”。这提示我们,对于一个物品组中的物品,所有费用相同的物品只留一个价值最大的,不影响结果。所以,我们可以对主件
更一般的问题
更一般的问题是:依赖关系以图论中“森林”的形式给出(森林即多叉树的集合),也就是说,主件的附件仍然可以具有自己的附件集合,限制只是每个物品最多只依赖于一个物品(只有一个主件)且不出现循环依赖。
解决这个问题仍然可以用将每个主件及其附件集合转化为物品组的方式。唯一不同的是,由于附件可能还有附件,就不能将每个附件都看作一个一般的01背包中的物品了。若这个附件也有附件集合,则它必定要被先转化为物品组,然后用分组的背包问题解出主件及其附件集合所对应的附件组中各个费用的附件所对应的价值。
事实上,这是一种树形DP,其特点是每个父节点都需要对它的各个儿子的属性进行一次DP以求得自己的相关属性。这已经触及到了“泛化物品”的思想。看完下节泛化物品后,你会发现这个“依赖关系树”每一个子树都等价于一件泛化物品,求某节点为根的子树对应的泛化物品相当于求其所有儿子的对应的泛化物品之和。
NOIP2006的那道背包问题我做得很失败,写了上百行的代码,却一分未得。后来我通过思考发现通过引入“物品组”和“依赖”的概念可以加深对这题的理解,还可以解决它的推广问题。用物品组的思想考虑那题中极其特殊的依赖关系:物品不能既作主件又作附件,每个主件最多有两个附件,可以发现一个主件和它的两个附件等价于一个由四个物品组成的物品组,这便揭示了问题的某种本质。
我想说:失败不是什么丢人的事情,从失败中全无收获才是。
考虑这样一种物品,它并没有固定的费用和价值,而是它的价值随着你分配给它的费用而变化。这就是泛化物品的概念。
更严格的定义之。在背包容量为
这个定义有一点点抽象,另一种理解是一个泛化物品就是一个数组
一个费用为
一个物品组可以看作一个泛化物品
泛化物品的和
如果面对两个泛化物品
由此可以定义泛化物品的和:
泛化物品的定义表明:在一个背包问题中,若将两个泛化物品代以它们的和,不影响问题的答案。事实上,对于其中的物品都是泛化物品的背包问题,求它的答案的过程也就是求所有这些泛化物品之和的过程。设此和为s,则答案就是s[0..V]中的最大值。
背包问题的泛化物品
一个背包问题中,可能会给出很多条件,包括每种物品的费用、价值等属性,物品之间的分组、依赖等关系等。但肯定能将问题对应于某个泛化物品。也就是说,给定了所有条件以后,就可以对每个非负整数v求得:若背包容量为
综上所述,一般而言,求解背包问题,即求解这个问题所对应的一个函数,即该问题的泛化物品。而求解某个泛化物品的一种方法就是将它表示为若干泛化物品的和然后求之。
本讲可以说都是我自己的原创思想。具体来说,是我在学习函数式编程的Scheme语言时,用函数编程的眼光审视各类背包问题得出的理论。这一讲真的很抽象,也许在“模型的抽象程度”这一方面已经超出了NOIP的要求,所以暂且看不懂也没关系。相信随着你的OI之路逐渐延伸,有一天你会理解的。
我想说:“思考”是一个OIer最重要的品质。简单的问题,深入思考以后,也能发现更多。
9. 背包问题问法的变化
以上涉及的各种背包问题都是要求在背包容量(费用)的限制下求可以取到的最大价值,但背包问题还有很多种灵活的问法,在这里值得提一下。但是我认为,只要深入理解了求背包问题最大价值的方法,即使问法变化了,也是不难想出算法的。
例如,求解最多可以放多少件物品或者最多可以装满多少背包的空间。这都可以根据具体问题利用前面的方程求出所有状态的值(f数组)之后得到。
还有,如果要求的是“总价值最小”“总件数最小”,只需简单的将上面的状态转移方程中的
下面说一些变化更大的问法。
输出方案
一般而言,背包问题是要求一个最优值,如果要求输出这个最优值的方案,可以参照一般动态规划问题输出方案的方法:记录下每个状态的最优值是由状态转移方程的哪一项推出来的,换句话说,记录下它是由哪一个策略推出来的。便可根据这条策略找到上一个状态,从上一个状态接着向前推即可。
还是以01背包为例,方程为
- i=N
- v=V
- while(i>0)
- if(g[i][v]==0)
- print "未选第i项物品"
- else if(g[i][v]==1)
- print "选了第i项物品"
- v=v-c[i]
另外,采用方程的前一项或后一项也可以在输出方案的过程中根据
输出字典序最小的最优方案
这里“字典序最小”的意思是
一般而言,求一个字典序最小的最优方案,只需要在转移时注意策略。首先,子问题的定义要略改一些。我们注意到,如果存在一个选了物品1的最优方案,那么答案一定包含物品
在这种情况下,可以按照前面经典的状态转移方程来求值,只是输出方案的时候要注意:从
求方案总数
对于一个给定了背包容量、物品费用、物品间相互关系(分组、依赖等)的背包问题,除了再给定每个物品的价值后求可得到的最大价值外,还可以得到装满背包或将背包装至某一指定容量的方案总数。
对于这类改变问法的问题,一般只需将状态转移方程中的
事实上,这样做可行的原因在于状态转移方程已经考察了所有可能的背包组成方案。
最优方案的总数
这里的最优方案是指物品总价值最大的方案。还是以01背包为例。
结合求最大总价值和方案总数两个问题的思路,最优方案的总数可以这样求:
- for i=1..N
- for v=0..V
- f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}
- g[i][v]=0
- if(f[i][v]==f[i-1][v])
- inc(g[i][v],g[i-1][v]
- if(f[i][v]==f[i-1][v-c[i]]+w[i])
- inc(g[i][v],g[i-1][v-c[i]])
如果你是第一次看到这样的问题,请仔细体会上面的伪代码。
小结
显然,这里不可能穷尽背包类动态规划问题所有的问法。甚至还存在一类将背包类动态规划问题与其它领域(例如数论、图论)结合起来的问题,在这篇论背包问题的专文中也不会论及。但只要深刻领会前述所有类别的背包问题的思路和状态转移方程,遇到其它的变形问法,只要题目难度还属于NOIP,应该也不难想出算法。
触类旁通、举一反三,应该也是一个OIer应有的品质吧。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。