当前位置:   article > 正文

图论算法<六>:数据结构之图Graph详解及代码实现

图论算法<六>:数据结构之图Graph详解及代码实现

1、图的定义

  图(graph)是一种非线性数据结构,由顶点(vertex)和边(edge)组成。我们可以将图 抽象地表示为一组顶点 和一组边的集合。如果将顶点看作节点,将边看作连接各个节点的引用(指针),我们就可以将图看作一种从链表拓展而来的数据结构。如图所示,相较于线性关系(链表)和分治关系(树),网络关系(图)的自由度更高,因而更为复杂。
在这里插入图片描述

2、图的类型

1)根据边是否具有方向,可分为无向图(undirected graph)和有向图(directed graph),如图 9-2 所示。

  • 在无向图中,边表示两顶点之间的“双向”连接关系,例如微信或 QQ 中的“好友关系”。
  • 在有向图中,边具有方向性,即两个方向的边是相互独立的,例如微博或抖音上的“关注”与“被关注”关系。

在这里插入图片描述
2)根据所有顶点是否连通,可分为连通图(connected graph)和非连通图(disconnected graph),如图所示。

  • 对于连通图,从某个顶点出发,可以到达其余任意顶点。
  • 对于非连通图,从某个顶点出发,至少有一个顶点无法到达。
    在这里插入图片描述

3)可以为边添加“权重”变量,从而得到如图 9-4 所示的有权图(weighted graph)。例如在《王者荣耀》等手游中,系统会根据共同游戏时间来计算玩家之间的“亲密度”,这种亲密度网络就可以用有权图来表示。
在这里插入图片描述

3、图的常用术语

  图数据结构包含以下常用术语。

  • 邻接(adjacency):当两顶点之间存在边相连时,称这两顶点“邻接”。在图 9-4 中,顶点 1 的邻接顶点为顶点 2、3、5。
  • 路径(path):从顶点 A 到顶点 B 经过的边构成的序列被称为从 A 到 B 的“路径”。在图 9-4 中,边序列 1-5-2-4是顶点 1 到顶点 4 的一条路径。
  • 度(degree):一个顶点拥有的边数。对于有向图,入度(in-degree)表示有多少条边指向该顶点,出度(out-degree)表示有多少条边从该顶点指出。

4、图的表示

  图的常用表示方式包括“邻接矩阵”和“邻接表”。以下使用无向图进行举例。

4.1 邻接矩阵

  设图的顶点数量为 n,邻接矩阵(adjacency matrix)使用一个 n*n大小的矩阵来表示图,每一行(列)代表一个顶点,矩阵元素代表边,用 1或 0 表示两个顶点之间是否存在边。
在这里插入图片描述

邻接矩阵具有以下特性。

  • 顶点不能与自身相连,因此邻接矩阵主对角线元素没有意义。
  • 对于无向图,两个方向的边等价,此时邻接矩阵关于主对角线对称。
  • 将邻接矩阵的元素从1和 0替换为权重,则可表示有权图。

  使用邻接矩阵表示图时,我们可以直接访问矩阵元素以获取边,因此增删查改操作的效率很高,但内存占用较多。

4.2 邻接表

  邻接表(adjacency list)使用n个链表来表示图,链表节点表示顶点。第i个链表对应顶点i,其中存储了该顶点的所有邻接顶点(与该顶点相连的顶点)。下图展示了一个使用邻接表存储的图的示例。
在这里插入图片描述
  邻接表仅存储实际存在的边,而边的总数通常远小于 n² ,因此它更加节省空间。然而,在邻接表中需要通过遍历链表来查找边,因此其时间效率不如邻接矩阵。

5、图的基础实现

5.1 基于邻接矩阵的实现

  给定一个顶点数量为n的无向图,则各种操作的实现方式如下:

  • 初始化
  • 添加或删除边
  • 添加删除顶点
/* 基于邻接矩阵实现的无向图类 */
class GraphAdjMat {
    vector<int> vertices;       // 顶点列表,元素代表“顶点值”,索引代表“顶点索引”
    vector<vector<int>> adjMat; // 邻接矩阵,行列索引对应“顶点索引”

  public:
    /* 构造方法 */
    GraphAdjMat(const vector<int> &vertices, const vector<vector<int>> &edges) {
        // 添加顶点
        for (int val : vertices) {
            addVertex(val);
        }
        // 添加边
        // 请注意,edges 元素代表顶点索引,即对应 vertices 元素索引
        for (const vector<int> &edge : edges) {
            addEdge(edge[0], edge[1]);
        }
    }

    /* 获取顶点数量 */
    int size() const {
        return vertices.size();
    }

    /* 添加顶点 */
    void addVertex(int val) {
        int n = size();
        // 向顶点列表中添加新顶点的值
        vertices.push_back(val);
        // 在邻接矩阵中添加一行
        adjMat.emplace_back(vector<int>(n, 0));
        // 在邻接矩阵中添加一列
        for (vector<int> &row : adjMat) {
            row.push_back(0);
        }
    }

    /* 删除顶点 */
    void removeVertex(int index) {
        if (index >= size()) {
            throw out_of_range("顶点不存在");
        }
        // 在顶点列表中移除索引 index 的顶点
        vertices.erase(vertices.begin() + index);
        // 在邻接矩阵中删除索引 index 的行
        adjMat.erase(adjMat.begin() + index);
        // 在邻接矩阵中删除索引 index 的列
        for (vector<int> &row : adjMat) {
            row.erase(row.begin() + index);
        }
    }

    /* 添加边 */
    // 参数 i, j 对应 vertices 元素索引
    void addEdge(int i, int j) {
        // 索引越界与相等处理
        if (i < 0 || j < 0 || i >= size() || j >= size() || i == j) {
            throw out_of_range("顶点不存在");
        }
        // 在无向图中,邻接矩阵关于主对角线对称,即满足 (i, j) == (j, i)
        adjMat[i][j] = 1;
        adjMat[j][i] = 1;
    }

    /* 删除边 */
    // 参数 i, j 对应 vertices 元素索引
    void removeEdge(int i, int j) {
        // 索引越界与相等处理
        if (i < 0 || j < 0 || i >= size() || j >= size() || i == j) {
            throw out_of_range("顶点不存在");
        }
        adjMat[i][j] = 0;
        adjMat[j][i] = 0;
    }

    /* 打印邻接矩阵 */
    void print() {
        cout << "顶点列表 = ";
        printVector(vertices);
        cout << "邻接矩阵 =" << endl;
        printVectorMatrix(adjMat);
    }
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83

5.2 基于邻接表的实现

/* 基于邻接表实现的无向图类 */
class GraphAdjList {
  public:
    // 邻接表,key:顶点,value:该顶点的所有邻接顶点
    unordered_map<Vertex *, vector<Vertex *>> adjList;

    /* 在 vector 中删除指定节点 */
    void remove(vector<Vertex *> &vec, Vertex *vet) {
        for (int i = 0; i < vec.size(); i++) {
            if (vec[i] == vet) {
                vec.erase(vec.begin() + i);
                break;
            }
        }
    }

    /* 构造方法 */
    GraphAdjList(const vector<vector<Vertex *>> &edges) {
        // 添加所有顶点和边
        for (const vector<Vertex *> &edge : edges) {
            addVertex(edge[0]);
            addVertex(edge[1]);
            addEdge(edge[0], edge[1]);
        }
    }

    /* 获取顶点数量 */
    int size() {
        return adjList.size();
    }

    /* 添加边 */
    void addEdge(Vertex *vet1, Vertex *vet2) {
        if (!adjList.count(vet1) || !adjList.count(vet2) || vet1 == vet2)
            throw invalid_argument("不存在顶点");
        // 添加边 vet1 - vet2
        adjList[vet1].push_back(vet2);
        adjList[vet2].push_back(vet1);
    }

    /* 删除边 */
    void removeEdge(Vertex *vet1, Vertex *vet2) {
        if (!adjList.count(vet1) || !adjList.count(vet2) || vet1 == vet2)
            throw invalid_argument("不存在顶点");
        // 删除边 vet1 - vet2
        remove(adjList[vet1], vet2);
        remove(adjList[vet2], vet1);
    }

    /* 添加顶点 */
    void addVertex(Vertex *vet) {
        if (adjList.count(vet))
            return;
        // 在邻接表中添加一个新链表
        adjList[vet] = vector<Vertex *>();
    }

    /* 删除顶点 */
    void removeVertex(Vertex *vet) {
        if (!adjList.count(vet))
            throw invalid_argument("不存在顶点");
        // 在邻接表中删除顶点 vet 对应的链表
        adjList.erase(vet);
        // 遍历其他顶点的链表,删除所有包含 vet 的边
        for (auto &adj : adjList) {
            remove(adj.second, vet);
        }
    }

    /* 打印邻接表 */
    void print() {
        cout << "邻接表 =" << endl;
        for (auto &adj : adjList) {
            const auto &key = adj.first;
            const auto &vec = adj.second;
            cout << key->val << ": ";
            printVector(vetsToVals(vec));
        }
    }
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80

6、图的遍历

  树代表的是“一对多”的关系,而图则具有更高的自由度,可以表示任意的“多对多”关系。因此,我们可以把树看作图的一种特例。显然,树的遍历操作也是图的遍历操作的一种特例。

  图和树都需要应用搜索算法来实现遍历操作。图的遍历方式也可分为两种:广度优先遍历和深度优先遍历

6.1 广度优先遍历BFS

  广度优先遍历是一种由近及远的遍历方式,从某个节点出发,始终优先访问距离最近的顶点,并一层层向外扩张。如图所示,从左上角顶点出发,首先遍历该顶点的所有邻接顶点,然后遍历下一个顶点的所有邻接顶点,以此类推,直至所有顶点访问完毕。

在这里插入图片描述

BFS算法通常借助队列来实现,代码如下所示。队列具有“先入先出”的性质,这与 BFS 的“由近及远”的思想异曲同工。

  • 将遍历起始顶点 startVet 加入队列,并开启循环。
  • 在循环的每轮迭代中,弹出队首顶点并记录访问,然后将该顶点的所有邻接顶点加入到队列尾部。
  • 循环步骤 2. ,直到所有顶点被访问完毕后结束。
  • 为了防止重复遍历顶点,我们需要借助一个哈希集合 visited 来记录哪些节点已被访问。
/* 广度优先遍历 */
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
vector<Vertex *> graphBFS(GraphAdjList &graph, Vertex *startVet) {
    // 顶点遍历序列
    vector<Vertex *> res;
    // 哈希集合,用于记录已被访问过的顶点
    unordered_set<Vertex *> visited = {startVet};
    // 队列用于实现 BFS
    queue<Vertex *> que;
    que.push(startVet);
    // 以顶点 vet 为起点,循环直至访问完所有顶点
    while (!que.empty()) {
        Vertex *vet = que.front();
        que.pop();          // 队首顶点出队
        res.push_back(vet); // 记录访问顶点
        // 遍历该顶点的所有邻接顶点
        for (auto adjVet : graph.adjList[vet]) {
            if (visited.count(adjVet))
                continue;            // 跳过已被访问的顶点
            que.push(adjVet);        // 只入队未访问的顶点
            visited.emplace(adjVet); // 标记该顶点已被访问
        }
    }
    // 返回顶点遍历序列
    return res;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26

6.2 深度优先遍历DFS

  深度优先遍历是一种优先走到底、无路可走再回头的遍历方式。如图 9-11 所示,从左上角顶点出发,访问当前顶点的某个邻接顶点,直到走到尽头时返回,再继续走到尽头并返回,以此类推,直至所有顶点遍历完成。

在这里插入图片描述

  这种“走到尽头再返回”的算法范式通常基于递归来实现。与广度优先遍历类似,在深度优先遍历中,我们也需要借助一个哈希集合 visited 来记录已被访问的顶点,以避免重复访问顶点。

/* 深度优先遍历辅助函数 */
void dfs(GraphAdjList &graph, unordered_set<Vertex *> &visited, vector<Vertex *> &res, Vertex *vet) {
    res.push_back(vet);   // 记录访问顶点
    visited.emplace(vet); // 标记该顶点已被访问
    // 遍历该顶点的所有邻接顶点
    for (Vertex *adjVet : graph.adjList[vet]) {
        if (visited.count(adjVet))
            continue; // 跳过已被访问的顶点
        // 递归访问邻接顶点
        dfs(graph, visited, res, adjVet);
    }
}

/* 深度优先遍历 */
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
vector<Vertex *> graphDFS(GraphAdjList &graph, Vertex *startVet) {
    // 顶点遍历序列
    vector<Vertex *> res;
    // 哈希集合,用于记录已被访问过的顶点
    unordered_set<Vertex *> visited;
    dfs(graph, visited, res, startVet);
    return res;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/你好赵伟/article/detail/585038
推荐阅读
相关标签
  

闽ICP备14008679号