赞
踩
上图架构以 batch_size 为 1,两个时间步的 X 为例子,计算过程如下:
根据 self-attention 的模型结构,改变 X 的输入顺序,不影响 attention 的结果,所以还需要引入额外的位置信息,即位置编码。
假设输入表示 X ∈ R n × d 包含一个序列中 n 个词元的 d 维嵌入表示。位置编码使用相同形状的位置 嵌入矩阵 P ∈ R n × d 输出 X + P ,矩阵第 i 行、第 2 j 列和列 2 j + 1 上的元素为: \text { 假设输入表示 } \mathbf{X} \in \mathbb{R}^{n \times d} \text { 包含一个序列中 } n \text { 个词元的 } d \text { 维嵌入表示。位置编码使用相同形状的位置 } 嵌入矩阵 \mathbf{P} \in \mathbb{R}^{n \times d} 输出\mathbf{X}+\mathbf{P}, 矩阵第 i行、第 2j 列和列 2j+1 上的元素为: 假设输入表示 X∈Rn×d 包含一个序列中 n 个词元的 d 维嵌入表示。位置编码使用相同形状的位置 嵌入矩阵P∈Rn×d输出X+P,矩阵第i行、第2j列和列2j+1上的元素为:
p
i
,
2
j
=
sin
(
i
1000
0
2
j
/
d
)
p
i
,
2
j
+
1
=
cos
(
i
1000
0
2
j
/
d
)
图里计算机二进制编码的低位和位置编码矩阵的前面几列对应。
除了上面捕获绝对位置信息之外,上述的位置编码还允许模型学习得到输入序列中相对位置信息。 这是因为对于任何确定的位置偏移δ,位置 i+δ 处的位置编码可以线性投影位置 i 处的位置编码来表示。
[
cos
(
δ
ω
j
)
sin
(
δ
ω
j
)
−
sin
(
δ
ω
j
)
cos
(
δ
ω
j
)
]
[
p
i
,
2
j
p
i
,
2
j
+
1
]
=
[
cos
(
δ
ω
j
)
sin
(
i
ω
j
)
+
sin
(
δ
ω
j
)
cos
(
i
ω
j
)
−
sin
(
δ
ω
j
)
sin
(
i
ω
j
)
+
cos
(
δ
ω
j
)
cos
(
i
ω
j
)
]
=
[
sin
(
(
i
+
δ
)
ω
j
)
cos
(
(
i
+
δ
)
ω
j
)
]
=
[
p
i
+
δ
,
2
j
p
i
+
δ
,
2
j
+
1
]
#@save class PositionalEncoding(nn.Module): """位置编码""" def __init__(self, num_hiddens, dropout, max_len=1000): super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(dropout) # 创建一个足够长的P self.P = torch.zeros((1, max_len, num_hiddens)) X = torch.arange(max_len, dtype=torch.float32).reshape( -1, 1) / torch.pow(10000, torch.arange( 0, num_hiddens, 2, dtype=torch.float32) / num_hiddens) self.P[:, :, 0::2] = torch.sin(X) self.P[:, :, 1::2] = torch.cos(X) def forward(self, X): X = X + self.P[:, :X.shape[1], :].to(X.device) return self.dropout(X)
两头注意力
七头注意力
七头注意力连接进行信息融合
掩码多头注意力
和多头注意力是一样的,只不过每个头的 self-attention 变成了 masked self-attention
import math import torch from torch import nn from d2l import torch as d2l #@save def transpose_qkv(X, num_heads): """为了多注意力头的并行计算而变换形状""" # 输入X的形状:(batch_size,查询或者“键-值”对的个数,num_hiddens) # 输出X的形状:(batch_size,查询或者“键-值”对的个数,num_heads, # num_hiddens/num_heads) X = X.reshape(X.shape[0], X.shape[1], num_heads, -1) # 输出X的形状:(batch_size,num_heads,查询或者“键-值”对的个数, # num_hiddens/num_heads) X = X.permute(0, 2, 1, 3) # 最终输出的形状:(batch_size*num_heads,查询或者“键-值”对的个数, # num_hiddens/num_heads) return X.reshape(-1, X.shape[2], X.shape[3]) #@save def transpose_output(X, num_heads): """逆转transpose_qkv函数的操作""" X = X.reshape(-1, num_heads, X.shape[1], X.shape[2]) X = X.permute(0, 2, 1, 3) return X.reshape(X.shape[0], X.shape[1], -1) #@save class DotProductAttention(nn.Module): """Scaled dot product attention. Defined in :numref:`subsec_additive-attention`""" def __init__(self, dropout, **kwargs): super(DotProductAttention, self).__init__(**kwargs) self.dropout = nn.Dropout(dropout) # Shape of `queries`: (`batch_size`, no. of queries, `d`) # Shape of `keys`: (`batch_size`, no. of key-value pairs, `d`) # Shape of `values`: (`batch_size`, no. of key-value pairs, value # dimension) # Shape of `valid_lens`: (`batch_size`,) or (`batch_size`, no. of queries) def forward(self, queries, keys, values, valid_lens=None): d = queries.shape[-1] # Set `transpose_b=True` to swap the last two dimensions of `keys` scores = torch.bmm(queries, keys.transpose(1,2)) / math.sqrt(d) self.attention_weights = masked_softmax(scores, valid_lens) return torch.bmm(self.dropout(self.attention_weights), values) #@save class MultiHeadAttention(nn.Module): """多头注意力""" def __init__(self, key_size, query_size, value_size, num_hiddens, num_heads, dropout, bias=False, **kwargs): super(MultiHeadAttention, self).__init__(**kwargs) self.num_heads = num_heads self.attention = d2l.DotProductAttention(dropout) self.W_q = nn.Linear(query_size, num_hiddens, bias=bias) self.W_k = nn.Linear(key_size, num_hiddens, bias=bias) self.W_v = nn.Linear(value_size, num_hiddens, bias=bias) self.W_o = nn.Linear(num_hiddens, num_hiddens, bias=bias) def forward(self, queries, keys, values, valid_lens): # queries,keys,values的形状: # (batch_size,查询或者“键-值”对的个数,num_hiddens) # valid_lens 的形状: # (batch_size,)或(batch_size,查询的个数) # 经过变换后,输出的queries,keys,values 的形状: # (batch_size*num_heads,查询或者“键-值”对的个数, # num_hiddens/num_heads) queries = transpose_qkv(self.W_q(queries), self.num_heads) keys = transpose_qkv(self.W_k(keys), self.num_heads) values = transpose_qkv(self.W_v(values), self.num_heads) if valid_lens is not None: # 在轴0,将第一项(标量或者矢量)复制num_heads次, # 然后如此复制第二项,然后诸如此类。 valid_lens = torch.repeat_interleave( valid_lens, repeats=self.num_heads, dim=0) # output的形状:(batch_size*num_heads,查询的个数, # num_hiddens/num_heads) output = self.attention(queries, keys, values, valid_lens) # output_concat的形状:(batch_size,查询的个数,num_hiddens) output_concat = transpose_output(output, self.num_heads) return self.W_o(output_concat)
具体的一个 encoder 块内部:
decoder:
import math import pandas as pd import torch from torch import nn from d2l import torch as d2l #@save class PositionWiseFFN(nn.Module): """基于位置的前馈网络""" def __init__(self, ffn_num_input, ffn_num_hiddens, ffn_num_outputs, **kwargs): super(PositionWiseFFN, self).__init__(**kwargs) self.dense1 = nn.Linear(ffn_num_input, ffn_num_hiddens) self.relu = nn.ReLU() self.dense2 = nn.Linear(ffn_num_hiddens, ffn_num_outputs) def forward(self, X): return self.dense2(self.relu(self.dense1(X))) #@save class AddNorm(nn.Module): """残差连接后进行层规范化""" def __init__(self, normalized_shape, dropout, **kwargs): super(AddNorm, self).__init__(**kwargs) self.dropout = nn.Dropout(dropout) self.ln = nn.LayerNorm(normalized_shape) def forward(self, X, Y): return self.ln(self.dropout(Y) + X) #@save class EncoderBlock(nn.Module): """Transformer编码器块""" def __init__(self, key_size, query_size, value_size, num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens, num_heads, dropout, use_bias=False, **kwargs): super(EncoderBlock, self).__init__(**kwargs) self.attention = d2l.MultiHeadAttention( key_size, query_size, value_size, num_hiddens, num_heads, dropout, use_bias) self.addnorm1 = AddNorm(norm_shape, dropout) self.ffn = PositionWiseFFN( ffn_num_input, ffn_num_hiddens, num_hiddens) self.addnorm2 = AddNorm(norm_shape, dropout) def forward(self, X, valid_lens): Y = self.addnorm1(X, self.attention(X, X, X, valid_lens)) return self.addnorm2(Y, self.ffn(Y)) #@save class TransformerEncoder(d2l.Encoder): """Transformer编码器""" def __init__(self, vocab_size, key_size, query_size, value_size, num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens, num_heads, num_layers, dropout, use_bias=False, **kwargs): super(TransformerEncoder, self).__init__(**kwargs) self.num_hiddens = num_hiddens self.embedding = nn.Embedding(vocab_size, num_hiddens) self.pos_encoding = d2l.PositionalEncoding(num_hiddens, dropout) self.blks = nn.Sequential() for i in range(num_layers): self.blks.add_module("block"+str(i), EncoderBlock(key_size, query_size, value_size, num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens, num_heads, dropout, use_bias)) def forward(self, X, valid_lens, *args): # 因为位置编码值在-1和1之间, # 因此嵌入值乘以嵌入维度的平方根进行缩放, # 然后再与位置编码相加。 X = self.pos_encoding(self.embedding(X) * math.sqrt(self.num_hiddens)) self.attention_weights = [None] * len(self.blks) for i, blk in enumerate(self.blks): X = blk(X, valid_lens) self.attention_weights[ i] = blk.attention.attention.attention_weights return X class DecoderBlock(nn.Module): """解码器中第i个块""" def __init__(self, key_size, query_size, value_size, num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens, num_heads, dropout, i, **kwargs): super(DecoderBlock, self).__init__(**kwargs) self.i = i self.attention1 = d2l.MultiHeadAttention( key_size, query_size, value_size, num_hiddens, num_heads, dropout) self.addnorm1 = AddNorm(norm_shape, dropout) self.attention2 = d2l.MultiHeadAttention( key_size, query_size, value_size, num_hiddens, num_heads, dropout) self.addnorm2 = AddNorm(norm_shape, dropout) self.ffn = PositionWiseFFN(ffn_num_input, ffn_num_hiddens, num_hiddens) self.addnorm3 = AddNorm(norm_shape, dropout) def forward(self, X, state): enc_outputs, enc_valid_lens = state[0], state[1] # 训练阶段,输出序列的所有词元都在同一时间处理, # 因此state[2][self.i]初始化为None。 # 预测阶段,输出序列是通过词元一个接着一个解码的, # 因此state[2][self.i]包含着直到当前时间步第i个块解码的输出表示 if state[2][self.i] is None: key_values = X else: key_values = torch.cat((state[2][self.i], X), axis=1) state[2][self.i] = key_values if self.training: batch_size, num_steps, _ = X.shape # dec_valid_lens的开头:(batch_size,num_steps), # 其中每一行是[1,2,...,num_steps] dec_valid_lens = torch.arange( 1, num_steps + 1, device=X.device).repeat(batch_size, 1) else: dec_valid_lens = None # 自注意力 X2 = self.attention1(X, key_values, key_values, dec_valid_lens) Y = self.addnorm1(X, X2) # 编码器-解码器注意力。 # enc_outputs的开头:(batch_size,num_steps,num_hiddens) Y2 = self.attention2(Y, enc_outputs, enc_outputs, enc_valid_lens) Z = self.addnorm2(Y, Y2) return self.addnorm3(Z, self.ffn(Z)), state class TransformerDecoder(d2l.AttentionDecoder): def __init__(self, vocab_size, key_size, query_size, value_size, num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens, num_heads, num_layers, dropout, **kwargs): super(TransformerDecoder, self).__init__(**kwargs) self.num_hiddens = num_hiddens self.num_layers = num_layers self.embedding = nn.Embedding(vocab_size, num_hiddens) self.pos_encoding = d2l.PositionalEncoding(num_hiddens, dropout) self.blks = nn.Sequential() for i in range(num_layers): self.blks.add_module("block"+str(i), DecoderBlock(key_size, query_size, value_size, num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens, num_heads, dropout, i)) self.dense = nn.Linear(num_hiddens, vocab_size) def init_state(self, enc_outputs, enc_valid_lens, *args): return [enc_outputs, enc_valid_lens, [None] * self.num_layers] def forward(self, X, state): X = self.pos_encoding(self.embedding(X) * math.sqrt(self.num_hiddens)) self._attention_weights = [[None] * len(self.blks) for _ in range (2)] for i, blk in enumerate(self.blks): X, state = blk(X, state) # 解码器自注意力权重 self._attention_weights[0][ i] = blk.attention1.attention.attention_weights # “编码器-解码器”自注意力权重 self._attention_weights[1][ i] = blk.attention2.attention.attention_weights return self.dense(X), state @property def attention_weights(self): return self._attention_weights num_hiddens, num_layers, dropout, batch_size, num_steps = 32, 2, 0.1, 64, 10 lr, num_epochs, device = 0.005, 200, d2l.try_gpu() ffn_num_input, ffn_num_hiddens, num_heads = 32, 64, 4 key_size, query_size, value_size = 32, 32, 32 norm_shape = [32] train_iter, src_vocab, tgt_vocab = d2l.load_data_nmt(batch_size, num_steps) encoder = TransformerEncoder( len(src_vocab), key_size, query_size, value_size, num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens, num_heads, num_layers, dropout) decoder = TransformerDecoder( len(tgt_vocab), key_size, query_size, value_size, num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens, num_heads, num_layers, dropout) net = d2l.EncoderDecoder(encoder, decoder) d2l.train_seq2seq(net, train_iter, lr, num_epochs, tgt_vocab, device)
bert 开启了预训练模型的风潮,使用了带掩码的语言模型,具体就是通过大量的数据,模型获取了语言信息抽取的能力,从而可以通过 fine-tune 应用到各种 NLP 任务上。
3w 的词典,使用了 WordPiece。[cls] A [seq] B [seq]
位置嵌入换成了学习的矩阵。
截取了 transformer 的 encoder(代码没有改动)
不同点:
输入
训练(类似完形填空,以及下一个句子预测)
尽管掩蔽语言建模能够编码双向上下文来表示单词,但它不能显式地建模文本对之间的逻辑关系。为了帮助理解两个文本序列之间的关系,BERT在预训练中考虑了一个二元分类任务——下一句预测。在为预训练生成句子对时,有一半的时间它们确实是标签为“真”的连续句子;在另一半的时间里,第二个句子是从语料库中随机抽取的,标记为“假”。
BERT-base(H = 768,L = 12,A = 12)
Transformer encoder block 里面主要参数有:
嵌入层:H x 30000(vocab_size 约等于 30000)
2. 全连接层:H x 4H + 4H x H(一个 block 里面有两个全连接层)
3. 多头注意力机制层:H x H / head_num x 3(一个头的参数,3代表 Q,K,V 用不同矩阵做线性变换),所有头加起来 H x H x 3,再加上多头注意力机制层的线性变换 H x H,这里可以结合下图理解:
1,2,3 加起来就是 BERT-base 的参数数量。
计算公式:
L
∗
12
H
2
+
30000
∗
H
≈
110
M
(
H
=
768
,
L
=
12
)
L*12H^{2} + 30000*H \approx 110M (H=768, L=12)
L∗12H2+30000∗H≈110M(H=768,L=12)
BERT-large 同理可以计算出参数数量约等于 340M。
截取了 transformer 的 decoder(代码没有改动)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。