赞
踩
K-均值聚类算法是一种常见的无监督学习算法,用于将数据集划分为K个不同的类别。该算法的目标是最小化数据点与其所属聚类中心之间的平均平方距离。下面分别介绍K-均值聚类算法的步骤和其优缺点。
K-均值聚类算法的步骤如下:
K-均值聚类算法的优点:
K-均值聚类算法的缺点:
总结来说,K-均值聚类算法是一种简单而高效的聚类算法,适用于大多数数据集。但是,该算法对于不同的初始聚类中心位置和异常值比较敏感,且需要事先确定聚类数量K。因此,在使用K-均值算法时,需要结合具体数据集的特点来选择合适的参数和进行后续的优化。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。