当前位置:   article > 正文

机器学习:时间序列模型_机器学习进行时序建模

机器学习进行时序建模

题目:下列时间序列模型中,哪一个模型可以较好地拟合波动性的分析和预测?

AR模型

MA模型

ARMA模型

GARCH模型(正确)

---------------------------------------------------------------------------------------------------------------

时间序列中常用预测技术  一个时间序列是一组对于某一变量连续时间点或连续时段上的观测值。

1.  移动平均法 (MA)

1.1. 简单移动平均法

设有一时间序列y1,y2,..., 则按数据点的顺序逐点推移求出N个数的平均数,即可得到一次移动平均数.

 1.2 趋势移动平均法  

当时间序列没有明显的趋势变动时,使用一次移动平均就能够准确地反映实际情况,直接用第t周期的一次移动平均数就可预测第1t+周期之值。

时间序列出现线性变动趋势时,用一次移动平均数来预测就会出现滞后偏差。修正的方法是在一次移动平均的基础上再做二次移动平均,利用移动平均滞后偏差的规律找出曲线的发展方向和发展趋势&#

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/在线问答5/article/detail/798102
推荐阅读
相关标签
  

闽ICP备14008679号