当前位置:   article > 正文

低照度增强算法(图像增强+目标检测+代码)_python setup.py develop --no_cuda_ext

python setup.py develop --no_cuda_ext

本文介绍

在增强低光图像时,许多深度学习算法基于Retinex理论。然而,Retinex模型并没有考虑到暗部隐藏的损坏或者由光照过程引入的影响。此外,这些方法通常需要繁琐的多阶段训练流程,并依赖于卷积神经网络,在捕捉长距离依赖关系方面存在局限性。

本文提出了一种简单而又有原则性的单阶段Retinex-based框架(ORF)。ORF首先估计照明信息来点亮低光图像,然后恢复损坏以生成增强的图像。我们设计了一个基于照明指导的Transformer(IGT),利用照明表示来指导不同光照条件下区域之间的非局部交互建模。将IGT插入到ORF中,我们得到了我们的算法Retinexformer。

全面的定量和定性实验证明了我们的Retinexformer在13个基准测试上明显优于现有的方法。通过用户研究和在低光物体检测上的应用,也揭示了我们方法的潜在实际价值。

结果展示

在这里插入图片描述
在这里插入图片描述

上图可以看出,图像低照度增强,显著增强了目标检测的recall值以及置信度,因此图像增强对目标检测、目标跟踪等计算机视觉领域有重要意义。

代码运行

1. 创建环境

  • 创建Conda环境
conda create -n Retinexformer python=3.7
conda activate Retinexformer
  • 1
  • 2
  • 安装依赖项
conda install pytorch=1.11 torchvision cudatoolkit=11.3 -c pytorch
pip install matplotlib scikit-learn scikit-image opencv-python yacs joblib natsort h5py tqdm tensorboard
pip install einops gdown addict future lmdb numpy pyyaml requests scipy yapf lpips
  • 1
  • 2
  • 3
  • 安装BasicSR
python setup.py develop --no_cuda_ext
  • 1

以上是创建和配置Retinexformer环境的步骤。首先,使用Conda创建一个名为Retinexformer的环境,并激活该环境。然后,通过conda和pip安装所需的依赖项,包括PyTorch、matplotlib、scikit-learn等。最后,使用python命令运行setup.py文件来安装BasicSR。完成这些步骤后,即可进入Retinexformer环境并开始使用。

在这里插入图片描述

2. 准备数据集

下载以下数据集:

LOL-v1 百度网盘 (提取码: cyh2), 谷歌网盘

LOL-v2 百度网盘 (提取码: cyh2), 谷歌网盘

SID 百度网盘 (提取码: gplv), 谷歌网盘

SMID 百度网盘 (提取码: btux), 谷歌网盘

SDSD-indoor 百度网盘 (提取码: jo1v), 谷歌网盘

SDSD-outdoor 百度网盘 (提取码: uibk), 谷歌网盘

MIT-Adobe FiveK 百度网盘 (提取码:cyh2), 谷歌网盘, 官方网站

请按照sRGB设置处理MIT Adobe FiveK数据集。

然后按照以下方式组织这些数据集:
  |--data   
    |    |--LOLv1
    |    |    |--Train
    |    |    |    |--input
    |    |    |    |    |--100.png
    |    |    |    |    |--101.png
    |    |    |    |     ...
    |    |    |    |--target
    |    |    |    |    |--100.png
    |    |    |    |    |--101.png
    |    |    |    |     ...
    |    |    |--Test
    |    |    |    |--input
    |    |    |    |    |--111.png
    |    |    |    |    |--146.png
    |    |    |    |     ...
    |    |    |    |--target
    |    |    |    |    |--111.png
    |    |    |    |    |--146.png
    |    |    |    |     ...
    |    |--LOLv2
    |    |    |--Real_captured
    |    |    |    |--Train
    |    |    |    |    |--Low
    |    |    |    |    |    |--00001.png
    |    |    |    |    |    |--00002.png
    |    |    |    |    |     ...
    |    |    |    |    |--Normal
    |    |    |    |    |    |--00001.png
    |    |    |    |    |    |--00002.png
    |    |    |    |    |     ...
    |    |    |    |--Test
    |    |    |    |    |--Low
    |    |    |    |    |    |--00690.png
    |    |    |    |    |    |--00691.png
    |    |    |    |    |     ...
    |    |    |    |    |--Normal
    |    |    |    |    |    |--00690.png
    |    |    |    |    |    |--00691.png
    |    |    |    |    |     ...
    |    |    |--Synthetic
    |    |    |    |--Train
    |    |    |    |    |--Low
    |    |    |    |    |   |--r000da54ft.png
    |    |    |    |    |   |--r02e1abe2t.png
    |    |    |    |    |    ...
    |    |    |    |    |--Normal
    |    |    |    |    |   |--r000da54ft.png
    |    |    |    |    |   |--r02e1abe2t.png
    |    |    |    |    |    ...
    |    |    |    |--Test
    |    |    |    |    |--Low
    |    |    |    |    |   |--r00816405t.png
    |    |    |    |    |   |--r02189767t.png
    |    |    |    |    |    ...
    |    |    |    |    |--Normal
    |    |    |    |    |   |--r00816405t.png
    |    |    |    |    |   |--r02189767t.png
    |    |    |    |    |    ...
    |    |--SDSD
    |    |    |--indoor_static_np
    |    |    |    |--input
    |    |    |    |    |--pair1
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |    |--pair2
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |     ...
    |    |    |    |--GT
    |    |    |    |    |--pair1
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |    |--pair2
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |     ...
    |    |    |--outdoor_static_np
    |    |    |    |--input
    |    |    |    |    |--MVI_0898
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |    |--MVI_0918
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |     ...
    |    |    |    |--GT
    |    |    |    |    |--MVI_0898
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |    |--MVI_0918
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |     ...
    |    |--SID
    |    |    |--short_sid2
    |    |    |    |--00001
    |    |    |    |    |--00001_00_0.04s.npy
    |    |    |    |    |--00001_00_0.1s.npy
    |    |    |    |    |--00001_01_0.04s.npy
    |    |    |    |    |--00001_01_0.1s.npy
    |    |    |    |     ...
    |    |    |    |--00002
    |    |    |    |    |--00002_00_0.04s.npy
    |    |    |    |    |--00002_00_0.1s.npy
    |    |    |    |    |--00002_01_0.04s.npy
    |    |    |    |    |--00002_01_0.1s.npy
    |    |    |    |     ...
    |    |    |     ...
    |    |    |--long_sid2
    |    |    |    |--00001
    |    |    |    |    |--00001_00_0.04s.npy
    |    |    |    |    |--00001_00_0.1s.npy
    |    |    |    |    |--00001_01_0.04s.npy
    |    |    |    |    |--00001_01_0.1s.npy
    |    |    |    |     ...
    |    |    |    |--00002
    |    |    |    |    |--00002_00_0.04s.npy
    |    |    |    |    |--00002_00_0.1s.npy
    |    |    |    |    |--00002_01_0.04s.npy
    |    |    |    |    |--00002_01_0.1s.npy
    |    |    |    |     ...
    |    |    |     ...
    |    |--SMID
    |    |    |--SMID_LQ_np
    |    |    |    |--0001
    |    |    |    |    |--0001.npy
    |    |    |    |    |--0002.npy
    |    |    |    |     ...
    |    |    |    |--0002
    |    |    |    |    |--0001.npy
    |    |    |    |    |--0002.npy
    |    |    |    |     ...
    |    |    |     ...
    |    |    |--SMID_Long_np
    |    |    |    |--0001
    |    |    |    |    |--0001.npy
    |    |    |    |    |--0002.npy
    |    |    |    |     ...
    |    |    |    |--0002
    |    |    |    |    |--0001.npy
    |    |    |    |    |--0002.npy
    |    |    |    |     ...
    |    |    |     ...
    |    |--FiveK
    |    |    |--train
    |    |    |    |--input
    |    |    |    |    |--a0099-kme_264.jpg
    |    |    |    |    |--a0101-kme_610.jpg
    |    |    |    |     ...
    |    |    |    |--target
    |    |    |    |    |--a0099-kme_264.jpg
    |    |    |    |    |--a0101-kme_610.jpg
    |    |    |    |     ...
    |    |    |--test
    |    |    |    |--input
    |    |    |    |    |--a4574-DSC_0038.jpg
    |    |    |    |    |--a4576-DSC_0217.jpg
    |    |    |    |     ...
    |    |    |    |--target
    |    |    |    |    |--a4574-DSC_0038.jpg
    |    |    |    |    |--a4576-DSC_0217.jpg
    |    |    |    |     ...
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171

3 测试

下载我们的模型文件从百度网盘 (提取码: cyh2) 或 谷歌网盘,然后将它们放在名为 pretrained_weights 的文件夹中。

下面是测试命令的示例:

# LOL-v1
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_LOL_v1.yml --weights pretrained_weights/LOL_v1.pth --dataset LOL_v1

# LOL-v2-real
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_LOL_v2_real.yml --weights pretrained_weights/LOL_v2_real.pth --dataset LOL_v2_real

# LOL-v2-synthetic
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_LOL_v2_synthetic.yml --weights pretrained_weights/LOL_v2_synthetic.pth --dataset LOL_v2_synthetic

# SID
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_SID.yml --weights pretrained_weights/SID.pth --dataset SID

# SMID
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_SMID.yml --weights pretrained_weights/SMID.pth --dataset SMID

# SDSD-indoor
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_SDSD_indoor.yml --weights pretrained_weights/SDSD_indoor.pth --dataset SDSD_indoor

# SDSD-outdoor
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_SDSD_outdoor.yml --weights pretrained_weights/SDSD_outdoor.pth --dataset SDSD_outdoor

# FiveK
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_FiveK.yml --weights pretrained_weights/FiveK.pth --dataset FiveK
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

4 训练

# LOL-v1
python3 basicsr/train.py --opt Options/RetinexFormer_LOL_v1.yml

# LOL-v2-real-
python3 basicsr/train.py --opt Options/RetinexFormer_LOL_v2_real.yml

# LOL-v2-synthetic
python3 basicsr/train.py --opt Options/RetinexFormer_LOL_v2_synthetic.yml

# SID1. Create Envirement
Make Conda Environment


conda create -n Retinexformer python=3.7
conda activate Retinexformer
Install Dependencies


conda install pytorch=1.11 torchvision cudatoolkit=11.3 -c pytorch
pip install matplotlib scikit-learn scikit-image opencv-python yacs joblib natsort h5py tqdm tensorboard
pip install einops gdown addict future lmdb numpy pyyaml requests scipy yapf lpips
Install BasicSR


python setup.py develop --no_cuda_ext
 

2. Prepare Dataset
Download the following datasets:

LOL-v1 Baidu Disk (code: cyh2), Google Drive

LOL-v2 Baidu Disk (code: cyh2), Google Drive

SID Baidu Disk (code: gplv), Google Drive

SMID Baidu Disk (code: btux), Google Drive

SDSD-indoor Baidu Disk (code: jo1v), Google Drive

SDSD-outdoor Baidu Disk (code: uibk), Google Drive

MIT-Adobe FiveK Baidu Disk (code:cyh2), Google Drive, Official

Please process the MIT Adobe FiveK dataset following the sRGB setting

​
Then organize these datasets as follows:
​

    |--data   
    |    |--LOLv1
    |    |    |--Train
    |    |    |    |--input
    |    |    |    |    |--100.png
    |    |    |    |    |--101.png
    |    |    |    |     ...
    |    |    |    |--target
    |    |    |    |    |--100.png
    |    |    |    |    |--101.png
    |    |    |    |     ...
    |    |    |--Test
    |    |    |    |--input
    |    |    |    |    |--111.png
    |    |    |    |    |--146.png
    |    |    |    |     ...
    |    |    |    |--target
    |    |    |    |    |--111.png
    |    |    |    |    |--146.png
    |    |    |    |     ...
    |    |--LOLv2
    |    |    |--Real_captured
    |    |    |    |--Train
    |    |    |    |    |--Low
    |    |    |    |    |    |--00001.png
    |    |    |    |    |    |--00002.png
    |    |    |    |    |     ...
    |    |    |    |    |--Normal
    |    |    |    |    |    |--00001.png
    |    |    |    |    |    |--00002.png
    |    |    |    |    |     ...
    |    |    |    |--Test
    |    |    |    |    |--Low
    |    |    |    |    |    |--00690.png
    |    |    |    |    |    |--00691.png
    |    |    |    |    |     ...
    |    |    |    |    |--Normal
    |    |    |    |    |    |--00690.png
    |    |    |    |    |    |--00691.png
    |    |    |    |    |     ...
    |    |    |--Synthetic
    |    |    |    |--Train
    |    |    |    |    |--Low
    |    |    |    |    |   |--r000da54ft.png
    |    |    |    |    |   |--r02e1abe2t.png
    |    |    |    |    |    ...
    |    |    |    |    |--Normal
    |    |    |    |    |   |--r000da54ft.png
    |    |    |    |    |   |--r02e1abe2t.png
    |    |    |    |    |    ...
    |    |    |    |--Test
    |    |    |    |    |--Low
    |    |    |    |    |   |--r00816405t.png
    |    |    |    |    |   |--r02189767t.png
    |    |    |    |    |    ...
    |    |    |    |    |--Normal
    |    |    |    |    |   |--r00816405t.png
    |    |    |    |    |   |--r02189767t.png
    |    |    |    |    |    ...
    |    |--SDSD
    |    |    |--indoor_static_np
    |    |    |    |--input
    |    |    |    |    |--pair1
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |    |--pair2
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |     ...
    |    |    |    |--GT
    |    |    |    |    |--pair1
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |    |--pair2
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |     ...
    |    |    |--outdoor_static_np
    |    |    |    |--input
    |    |    |    |    |--MVI_0898
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |    |--MVI_0918
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |     ...
    |    |    |    |--GT
    |    |    |    |    |--MVI_0898
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |    |--MVI_0918
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |     ...
    |    |--SID
    |    |    |--short_sid2
    |    |    |    |--00001
    |    |    |    |    |--00001_00_0.04s.npy
    |    |    |    |    |--00001_00_0.1s.npy
    |    |    |    |    |--00001_01_0.04s.npy
    |    |    |    |    |--00001_01_0.1s.npy
    |    |    |    |     ...
    |    |    |    |--00002
    |    |    |    |    |--00002_00_0.04s.npy
    |    |    |    |    |--00002_00_0.1s.npy
    |    |    |    |    |--00002_01_0.04s.npy
    |    |    |    |    |--00002_01_0.1s.npy
    |    |    |    |     ...
    |    |    |     ...
    |    |    |--long_sid2
    |    |    |    |--00001
    |    |    |    |    |--00001_00_0.04s.npy
    |    |    |    |    |--00001_00_0.1s.npy
    |    |    |    |    |--00001_01_0.04s.npy
    |    |    |    |    |--00001_01_0.1s.npy
    |    |    |    |     ...
    |    |    |    |--00002
    |    |    |    |    |--00002_00_0.04s.npy
    |    |    |    |    |--00002_00_0.1s.npy
    |    |    |    |    |--00002_01_0.04s.npy
    |    |    |    |    |--00002_01_0.1s.npy
    |    |    |    |     ...
    |    |    |     ...
    |    |--SMID
    |    |    |--SMID_LQ_np
    |    |    |    |--0001
    |    |    |    |    |--0001.npy
    |    |    |    |    |--0002.npy
    |    |    |    |     ...
    |    |    |    |--0002
    |    |    |    |    |--0001.npy
    |    |    |    |    |--0002.npy
    |    |    |    |     ...
    |    |    |     ...
    |    |    |--SMID_Long_np
    |    |    |    |--0001
    |    |    |    |    |--0001.npy
    |    |    |    |    |--0002.npy
    |    |    |    |     ...
    |    |    |    |--0002
    |    |    |    |    |--0001.npy
    |    |    |    |    |--0002.npy
    |    |    |    |     ...
    |    |    |     ...
    |    |--FiveK
    |    |    |--train
    |    |    |    |--input
    |    |    |    |    |--a0099-kme_264.jpg
    |    |    |    |    |--a0101-kme_610.jpg
    |    |    |    |     ...
    |    |    |    |--target
    |    |    |    |    |--a0099-kme_264.jpg
    |    |    |    |    |--a0101-kme_610.jpg
    |    |    |    |     ...
    |    |    |--test
    |    |    |    |--input
    |    |    |    |    |--a4574-DSC_0038.jpg
    |    |    |    |    |--a4576-DSC_0217.jpg
    |    |    |    |     ...
    |    |    |    |--target
    |    |    |    |    |--a4574-DSC_0038.jpg
    |    |    |    |    |--a4576-DSC_0217.jpg
    |    |    |    |     ...
​
</details>

We also provide download links for LIME, NPE, MEF, DICM, and VV datasets that have no ground truth:

Baidu Disk (code: cyh2)
 or Google Drive

&nbsp;                    

3. Testing
Download our models from Baidu Disk (code: cyh2) or Google Drive. Put them in folder pretrained_weights


# LOL-v1
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_LOL_v1.yml --weights pretrained_weights/LOL_v1.pth --dataset LOL_v1
​
# LOL-v2-real
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_LOL_v2_real.yml --weights pretrained_weights/LOL_v2_real.pth --dataset LOL_v2_real
​
# LOL-v2-synthetic
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_LOL_v2_synthetic.yml --weights pretrained_weights/LOL_v2_synthetic.pth --dataset LOL_v2_synthetic
​
# SID
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_SID.yml --weights pretrained_weights/SID.pth --dataset SID
​
# SMID
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_SMID.yml --weights pretrained_weights/SMID.pth --dataset SMID
​
# SDSD-indoor
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_SDSD_indoor.yml --weights pretrained_weights/SDSD_indoor.pth --dataset SDSD_indoor
​
# SDSD-outdoor
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_SDSD_outdoor.yml --weights pretrained_weights/SDSD_outdoor.pth --dataset SDSD_outdoor
​
# FiveK
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_FiveK.yml --weights pretrained_weights/FiveK.pth --dataset FiveK
&nbsp;

4. Training
Feel free to check our training logs from Baidu Disk (code: cyh2) or Google Drive


python3 basicsr/train.py --opt Options/RetinexFormer_SID.yml

# SMID
python3 basicsr/train.py --opt Options/RetinexFormer_SMID.yml

# SDSD-indoor
python3 basicsr/train.py --opt Options/RetinexFormer_SDSD_indoor.yml

# SDSD-outdoorxunlian
python3 basicsr/train.py --opt Options/RetinexFormer_SDSD_outdoor.yml
在增强低光图像时,许多深度学习算法基于Retinex理论。然而,Retinex模型并没有考虑到暗部隐藏的损坏或者由光照过程引入的影响。此外,这些方法通常需要繁琐的多阶段训练流程,并依赖于卷积神经网络,在捕捉长距离依赖关系方面存在局限性。

本文提出了一种简单而又有原则性的单阶段Retinex-based框架(ORF)。ORF首先估计照明信息来点亮低光图像,然后恢复损坏以生成增强的图像。我们设计了一个基于照明指导的Transformer(IGT),利用照明表示来指导不同光照条件下区域之间的非局部交互建模。将IGT插入到ORF中,我们得到了我们的算法Retinexformer。

全面的定量和定性实验证明了我们的Retinexformer在13个基准测试上明显优于现有的方法。通过用户研究和在低光物体检测上的应用,也揭示了我们方法的潜在实际价值。
# FiveK
python3 basicsr/train.py --opt Options/RetinexFormer_FiveK.yml
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
  • 273
  • 274
  • 275
  • 276
  • 277
  • 278
  • 279
  • 280
  • 281

5 图像评价指标对比

在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小蓝xlanll/article/detail/495587
推荐阅读
相关标签
  

闽ICP备14008679号