赞
踩
转载请注明出处:http://blog.csdn.net/wangyaninglm/article/details/43853435,
来自:shiter编写程序的艺术
对计算图像相似度的方法,本文做了如下总结,主要有三种办法:
PSNR(Peak Signal to Noise Ratio),一种全参考的图像质量评价指标。
简介:https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
PSNR是最普遍和使用最为广泛的一种图像客观评价指标,然而它是基于对应像素点间的误差,即基于误差敏感的图像质量评价。由于并未考虑到人眼的视觉特性(人眼对空间频率较低的对比差异敏感度较高,人眼对亮度对比差异的敏感度较色度高,人眼对一个区域的感知结果会受到其周围邻近区域的影响等),因而经常出现评价结果与人的主观感觉不一致的情况。
SSIM(structural similarity)结构相似性,也是一种全参考的图像质量评价指标,它分别从亮度、对比度、结构三方面度量图像相似性。
SSIM取值范围[0,1],值越大,表示图像失真越小.
在实际应用中,可以利用滑动窗将图像分块,令分块总数为N,考虑到窗口形状对分块的影响,采用高斯加权计算每一窗口的均值、方差以及协方差,然后计算对应块的结构相似度SSIM,最后将平均值作为两图像的结构相似性度量,即平均结构相似性MSSIM:
[1] 峰值信噪比-维基百科
[2] 王宇庆,刘维亚,王勇. 一种基于局部方差和结构相似度的图像质量评价方法[J]. 光电子激光,2008。
[3]http://www.cnblogs.com/vincent2012/archive/2012/10/13/2723152.html
官方文档的说明,不过是GPU版本的,我们可以修改不用gpu不然还得重新编译
http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/highgui/video-input-psnr-ssim/video-input-psnr-ssim.html#videoinputpsnrmssim
http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/gpu/gpu-basics-similarity/gpu-basics-similarity.html?highlight=psnr
- // PSNR.cpp : 定义控制台应用程序的入口点。
- //
-
- #include "stdafx.h"
-
- #include <iostream> // Console I/O
- #include <sstream> // String to number conversion
-
- #include <opencv2/core/core.hpp> // Basic OpenCV structures
- #include <opencv2/imgproc/imgproc.hpp>// Image processing methods for the CPU
- #include <opencv2/highgui/highgui.hpp>// Read images
- #include <opencv2/gpu/gpu.hpp> // GPU structures and methods
-
- using namespace std;
- using namespace cv;
-
- double getPSNR(const Mat& I1, const Mat& I2); // CPU versions
- Scalar getMSSIM( const Mat& I1, const Mat& I2);
-
- double getPSNR_GPU(const Mat& I1, const Mat& I2); // Basic GPU versions
- Scalar getMSSIM_GPU( const Mat& I1, const Mat& I2);
-
- struct BufferPSNR // Optimized GPU versions
- { // Data allocations are very expensive on GPU. Use a buffer to solve: allocate once reuse later.
- gpu::GpuMat gI1, gI2, gs, t1,t2;
-
- gpu::GpuMat buf;
- };
- double getPSNR_GPU_optimized(const Mat& I1, const Mat& I2, BufferPSNR& b);
-
- struct BufferMSSIM // Optimized GPU versions
- { // Data allocations are very expensive on GPU. Use a buffer to solve: allocate once reuse later.
- gpu::GpuMat gI1, gI2, gs, t1,t2;
-
- gpu::GpuMat I1_2, I2_2, I1_I2;
- vector<gpu::GpuMat> vI1, vI2;
-
- gpu::GpuMat mu1, mu2;
- gpu::GpuMat mu1_2, mu2_2, mu1_mu2;
-
- gpu::GpuMat sigma1_2, sigma2_2, sigma12;
- gpu::GpuMat t3;
-
- gpu::GpuMat ssim_map;
-
- gpu::GpuMat buf;
- };
- Scalar getMSSIM_GPU_optimized( const Mat& i1, const Mat& i2, BufferMSSIM& b);
-
- void help()
- {
- cout
- << "\n--------------------------------------------------------------------------" << endl
- << "This program shows how to port your CPU code to GPU or write that from scratch." << endl
- << "You can see the performance improvement for the similarity check methods (PSNR and SSIM)." << endl
- << "Usage:" << endl
- << "./gpu-basics-similarity referenceImage comparedImage numberOfTimesToRunTest(like 10)." << endl
- << "--------------------------------------------------------------------------" << endl
- << endl;
- }
-
- int main(int argc, char *argv[])
- {
- help();
- Mat I1 = imread("swan1.jpg",1); // Read the two images
- Mat I2 = imread("swan2.jpg",1);
-
- if (!I1.data || !I2.data) // Check for success
- {
- cout << "Couldn't read the image";
- return 0;
- }
-
- BufferPSNR bufferPSNR;
- BufferMSSIM bufferMSSIM;
-
- int TIMES;
- stringstream sstr("500");
- sstr >> TIMES;
- double time, result;
-
- //------------------------------- PSNR CPU ----------------------------------------------------
- time = (double)getTickCount();
-
- for (int i = 0; i < TIMES; ++i)
- result = getPSNR(I1,I2);
-
- time = 1000*((double)getTickCount() - time)/getTickFrequency();
- time /= TIMES;
-
- cout << "Time of PSNR CPU (averaged for " << TIMES << " runs): " << time << " milliseconds."
- << " With result of: " << result << endl;
-
- ------------------------------- PSNR GPU ----------------------------------------------------
- //time = (double)getTickCount();
-
- //for (int i = 0; i < TIMES; ++i)
- // result = getPSNR_GPU(I1,I2);
-
- //time = 1000*((double)getTickCount() - time)/getTickFrequency();
- //time /= TIMES;
-
- //cout << "Time of PSNR GPU (averaged for " << TIMES << " runs): " << time << " milliseconds."
- // << " With result of: " << result << endl;
- /*
- //------------------------------- PSNR GPU Optimized--------------------------------------------
- time = (double)getTickCount(); // Initial call
- result = getPSNR_GPU_optimized(I1, I2, bufferPSNR);
- time = 1000*((double)getTickCount() - time)/getTickFrequency();
- cout << "Initial call GPU optimized: " << time <<" milliseconds."
- << " With result of: " << result << endl;
- time = (double)getTickCount();
- for (int i = 0; i < TIMES; ++i)
- result = getPSNR_GPU_optimized(I1, I2, bufferPSNR);
- time = 1000*((double)getTickCount() - time)/getTickFrequency();
- time /= TIMES;
- cout << "Time of PSNR GPU OPTIMIZED ( / " << TIMES << " runs): &
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。