当前位置:   article > 正文

Python中使用Oracle向量数据库实现文本检索系统

Python中使用Oracle向量数据库实现文本检索系统

Python中使用Oracle向量数据库实现文本检索系统

在本文中,我们将深入分析一个使用Oracle向量数据库实现文本检索系统的Python代码,并基于相同的技术生成一个新的示例。这个系统允许我们存储文档及其嵌入向量,并执行相似性搜索。

代码分析

让我们逐步分析原始代码的主要组件和功能:

  1. 导入必要的库:

    • 使用oracledb连接Oracle数据库
    • 使用numpy处理向量
    • 使用pydantic进行配置验证
    • 使用flaskredis进行Web应用程序集成
  2. 定义OracleVectorConfig类:

    • 使用Pydantic模型验证Oracle连接配置
  3. 创建OracleVector类:

    • 实现向量数据库的核心功能
    • 使用contextmanager管理数据库连接
    • 实现CRUD操作和向量搜索
  4. 实现OracleVectorFactory类:

    • 用于初始化向量数据库实例

现在,让我们基于相同的技术创建一个新的示例代码:

import array
import json
import uuid
from contextlib import contextmanager
from typing import List, Dict, Any

import numpy as np
import oracledb
from pydantic import BaseModel, validator

class OracleConfig(BaseModel):
    host: str
    port: int
    user: str
    password: str
    database: str

    @validator('host', 'user', 'password', 'database')
    def check_not_empty(cls, v):
        if not v:
            raise ValueError("Field cannot be empty")
        return v

class TextEmbeddingStore:
    def __init__(self, config: OracleConfig):
        self.pool = self._create_connection_pool(config)
        self.table_name = "text_embeddings"
        self._create_table()

    def _create_connection_pool(self, config: OracleConfig):
        return oracledb.create_pool(
            user=config.user,
            password=config.password,
            dsn=f"{config.host}:{config.port}/{config.database}",
            min=1,
            max=5,
            increment=1
        )

    @contextmanager
    def _get_cursor(self):
        conn = self.pool.acquire()
        conn.inputtypehandler = self._input_type_handler
        conn.outputtypehandler = self._output_type_handler
        cur = conn.cursor()
        try:
            yield cur
        finally:
            cur.close()
            conn.commit()
            conn.close()

    def _input_type_handler(self, cursor, value, arraysize):
        if isinstance(value, np.ndarray):
            return cursor.var(
                oracledb.DB_TYPE_VECTOR,
                arraysize=arraysize,
                inconverter=self._numpy_to_array
            )

    def _output_type_handler(self, cursor, metadata):
        if metadata.type_code is oracledb.DB_TYPE_VECTOR:
            return cursor.var(
                metadata.type_code,
                arraysize=cursor.arraysize,
                outconverter=self._array_to_numpy
            )

    def _numpy_to_array(self, value):
        return array.array('f', value)

    def _array_to_numpy(self, value):
        return np.array(value, dtype=np.float32)

    def _create_table(self):
        with self._get_cursor() as cur:
            cur.execute(f"""
                CREATE TABLE IF NOT EXISTS {self.table_name} (
                    id VARCHAR2(100) PRIMARY KEY,
                    text CLOB NOT NULL,
                    metadata JSON,
                    embedding VECTOR NOT NULL
                )
            """)

    def add_texts(self, texts: List[str], embeddings: List[List[float]], metadata: List[Dict] = None):
        if metadata is None:
            metadata = [{} for _ in texts]
        
        values = [
            (str(uuid.uuid4()), text, json.dumps(meta), np.array(emb, dtype=np.float32))
            for text, emb, meta in zip(texts, embeddings, metadata)
        ]

        with self._get_cursor() as cur:
            cur.executemany(
                f"INSERT INTO {self.table_name} (id, text, metadata, embedding) VALUES (:1, :2, :3, :4)",
                values
            )

    def search_similar(self, query_vector: List[float], top_k: int = 5) -> List[Dict[str, Any]]:
        query_vector = np.array(query_vector, dtype=np.float32)
        with self._get_cursor() as cur:
            cur.execute(
                f"""
                SELECT id, text, metadata, vector_distance(embedding, :1) AS distance
                FROM {self.table_name}
                ORDER BY distance
                FETCH FIRST :2 ROWS ONLY
                """,
                [query_vector, top_k]
            )
            results = []
            for id, text, metadata, distance in cur:
                results.append({
                    "id": id,
                    "text": text,
                    "metadata": json.loads(metadata),
                    "distance": distance,
                    "similarity": 1 - distance
                })
        return results

# 使用示例
if __name__ == "__main__":
    config = OracleConfig(
        host="localhost",
        port=1521,
        user="your_username",
        password="your_password",
        database="your_database"
    )
    
    store = TextEmbeddingStore(config)
    
    # 添加文本和嵌入
    texts = ["Hello world", "Python programming", "Vector database"]
    embeddings = [[0.1, 0.2, 0.3], [0.4, 0.5, 0.6], [0.7, 0.8, 0.9]]
    store.add_texts(texts, embeddings)
    
    # 搜索相似文本
    query_vector = [0.2, 0.3, 0.4]
    results = store.search_similar(query_vector, top_k=2)
    
    for result in results:
        print(f"Text: {result['text']}")
        print(f"Similarity: {result['similarity']:.4f}")
        print("---")
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148

这个新的示例代码实现了一个简化版的文本嵌入存储系统,使用Oracle向量数据库。它包含以下主要功能:

  1. 使用Pydantic进行配置验证
  2. 创建和管理Oracle连接池
  3. 使用上下文管理器处理数据库连接
  4. 处理numpy数组和Oracle向量类型之间的转换
  5. 实现添加文本和嵌入的方法
  6. 实现基于向量相似度的搜索方法

这个示例展示了如何使用Oracle向量数据库来存储和检索文本嵌入,可以作为构建更复杂的文本检索或推荐系统的基础。

在实际应用中,你可能需要添加错误处理、日志记录、性能优化等功能。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/爱喝兽奶帝天荒/article/detail/802253
推荐阅读
相关标签
  

闽ICP备14008679号