赞
踩
智普AI推出新一代的 CogVLM2 系列模型,并开源了两款基于 Meta-Llama-3-8B-Instruct 开源模型。与上一代的 CogVLM 开源模型相比,CogVLM2 系列开源模型具有以下改进:
硬件要求(模型推理):
INT4 : RTX3090*1,显存16GB,内存32GB,系统盘200GB
模型微调硬件要求更高。
git clone https://github.com/THUDM/CogVLM2.git;
cd CogVLM
手动下载模型
下载地址:https://hf-mirror.com/THUDM
git clone https://hf-mirror.com/THUDM/cogvlm2-llama3-chat-19B
构建镜像先把模型的地址修改为本地模型,避免从huggingface临时下载。
修改: basic_demo/web_demo.py
:::info
MODEL_PATH = “/app/CogVLM2/models/cogvlm2-llama3-chinese-chat-19B-int4”
:::
:::info
model = AutoModelForCausalLM.from_pretrained(
~~ MODEL_PATH,~~
~~ load_in_4bit=True,~~
~~ torch_dtype=TORCH_TYPE,~~
~~ trust_remote_code=True,~~
~~ low_cpu_mem_usage=LOWUSAGE).eval()~~
:::
注意
COPY CogVLM2/ /app/CogVLM2/
这行执行需要根据世纪CogVLM源码下载存放位置。
FROM pytorch/pytorch:2.3.0-cuda12.1-cudnn8-runtime ARG DEBIAN_FRONTEND=noninteractive WORKDIR /app RUN sudo apt-get --fix-broken install RUN sudo apt-get install -y --no-install-recommends \ python3-mpi4py mpich gcc libopenmpi-dev RUN pip config set global.index-url http://mirrors.aliyun.com/pypi/simple RUN pip config set install.trusted-host mirrors.aliyun.com # RUN pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ mpi4py RUN pip install mpi4py COPY CogVLM2/ /app/CogVLM2/ WORKDIR /app/CogVLM2 RUN pip install --use-pep517 -r basic_demo/requirements.txt RUN pip install --use-pep517 -r finetune_demo/requirements.txt EXPOSE 8000 CMD [ "chainlit","run","basic_demo/web_demo.py" ]
本文采用基础镜像
pytorch/pytorch:2.3.0-cuda12.1-cudnn8-runtime
系统预置了部分python 库,为避免冲突,需要注释掉源码中的部分依赖包。(torch,torchvision)
xformers>=0.0.26.post1 torch>=2.3.0 torchvision>=0.18.0 transformers>=4.40.2 huggingface-hub>=0.23.0 pillow>=10.3.0 chainlit>=1.0.506 pydantic>=2.7.1 timm>=0.9.16 openai>=1.30.1 loguru>=0.7.2 pydantic>=2.7.1 einops>=0.7.0 sse-starlette>=2.1.0 bitsandbytes>=0.43.1
docker build -t qingcloudtech/cogvlm:v1.4 .
第一步:执行启动指令
docker run -it --gpus all \
-p 8000:8000 \
-v /u01/workspace/models/cogvlm2-llama3-chinese-chat-19B-int4:/app/CogVLM2/models/cogvlm2-llama3-chinese-chat-19B-int4 \
-v /u01/workspace/cogvlm/images:/u01/workspace/images \
-e MODEL_PATH=/app/CogVLM2/models/cogvlm2-llama3-chinese-chat-19B-int4 \
-e QUANT=4 \
qingcloudtech/cogvlm:v1.4 chainlit run basic_demo/web_demo.py
注意提前准备好模型,并挂载好模型路径,否则可能会因为网络导致模型无法动态下载成功。
量化版启动后GPU大致16G:
+-----------------------------------------------------------------------------------------+ | NVIDIA-SMI 550.67 Driver Version: 550.67 CUDA Version: 12.4 | |-----------------------------------------+------------------------+----------------------+ | GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |=========================================+========================+======================| | 0 NVIDIA GeForce RTX 4090 Off | 00000000:01:00.0 On | Off | | 0% 46C P8 24W / 450W | 19266MiB / 24564MiB | 1% Default | | | | N/A | +-----------------------------------------+------------------------+----------------------+ +-----------------------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=========================================================================================| | 0 N/A N/A 1462 G /usr/lib/xorg/Xorg 231MiB | | 0 N/A N/A 1778 G /usr/bin/gnome-shell 69MiB | | 0 N/A N/A 8214 G clash-verge 6MiB | | 0 N/A N/A 9739 G ...seed-version=20240523-210831.182000 115MiB | | 0 N/A N/A 10687 G ...erProcess --variations-seed-version 36MiB | | 0 N/A N/A 287819 C /opt/conda/bin/python 2986MiB | | 0 N/A N/A 291020 C /opt/conda/bin/python 15790MiB | +-----------------------------------------------------------------------------------------+
第一步:访问验证:127.0.0.1:8000
Q:按原文列表格式输出文本信息
Q:用列表形式描述图中的关键步骤。
第一步:执行启动指令
docker run -itd --gpus all \
-p 8000:8000 \
-v /u01/workspace/models/cogvlm2-llama3-chinese-chat-19B-int4:/app/CogVLM2/models/cogvlm2-llama3-chinese-chat-19B-int4 \
-v /u01/workspace/cogvlm/images:/u01/workspace/images \
-e MODEL_PATH=/app/CogVLM2/models/cogvlm2-llama3-chinese-chat-19B-int4 \
qingcloudtech/cogvlm:v1.4 python basic_demo/openai_api_demo.py --quant=4
第二步:测试验证
『693cce5688f2 』替换为自己的容器ID
docker exec -it 0e691fd4153f /bin/bash
cd basic_demo
python openai_api_request.py
root@itserver03:/u01/workspace/cogvlm/CogVLM2/basic_demo# docker exec -it 693cce5688f2 python openai_demo/openai_api_request.py
This image captures a serene landscape featuring a wooden boardwalk that leads through a lush green field. The field is bordered by tall grasses, and the sky overhead is vast and blue, dotted with wispy clouds. The horizon reveals distant trees and a clear view of the sky, suggesting a calm and peaceful day.
root@itserver03:/u01/workspace/cogvlm/CogVLM2/basic_demo#
其他访问方式:
Restful API地址:
127.0.0.1:8000/v1/chat/completions
【Qinghub Studio 】更适合开发人员的低代码开源开发平台
【QingHub企业级应用统一部署】
【QingHub企业级应用开发管理】
【QingHub演示】
【https://qingplus.cn】
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。