赞
踩
根据数据集组成不同,可以把机器学习算法分为:
监督学习
半监督学习
定义:
输入数据是由输入特征值和目标值所组成。
例如:预测房价,根据样本集拟合出一条连续曲线。
例如:根据肿瘤特征判断良性还是恶性,得到的是结果是“良性”或者“恶性”,是离散的。
定义:
输入数据是由输入特征值组成,没有目标值
举例:
定义:
训练集同时包含有标记样本数据和未标记样本数据。
举例:
定义:
实质是make decisions 问题,即自动进行决策,并且可以做连续决策。
举例:
小孩想要走路,但在这之前,他需要先站起来,站起来之后还要保持平衡,接下来还要先迈出一条腿,是左腿还是右腿,迈出一步后还要迈出下一步。
小孩就是 agent,他试图通过采取行动(即行走)来操纵环境(行走的表面),并且从一个状态转变到另一个状态(即他走的每一步),当他完成任务的子任务(即走了几步)时,孩子得到奖励(给巧克力吃),并且当他不能走路时,就不会给巧克力。
主要包含五个元素:agent, action, reward, environment, observation;
强化学习的目标就是获得最多的累计奖励。
监督学习和强化学习的对比
||监督学习|强化学习| |---|---|---| |反馈映射|输出的是之间的关系,可以告诉算法什么样的输入对应着什么样的输出。|输出的是给机器的反馈 reward function,即用来判断这个行为是好是坏。| |反馈时间|做了比较坏的选择会立刻反馈给算法。|结果反馈有延时,有时候可能需要走了很多步以后才知道以前的某一步的选择是好还是坏。| |输入特征|输入是独立同分布的。|面对的输入总是在变化,每当算法做出一个行为,它影响下一次决策的输入。|
拓展概念:什么是独立同分布:
拓展阅读:Alphago进化史 漫画告诉你Zero为什么这么牛:
[
||In|Out|目的|案例| |---|---|---|---|---| |监督学习(supervised learning)|有标签|有反馈|预测结果|猫狗分类 房价预测| |无监督学习(unsupervised learning)|无标签|无反馈|发现潜在结构|“物以类聚,人以群分”| |半监督学习(Semi-Supervised Learning)|部分有标签,部分无标签|有反馈|降低数据标记的难度|| |强化学习(reinforcement learning)|决策流程及激励系统|一系列行动|长期利益最大化|学下棋|
目标
了解机器学习中模型评估的方法
模型评估是模型开发过程不可或缺的一部分。它有助于发现表达数据的最佳模型和所选模型将来工作的性能如何。
按照数据集的目标值不同,可以把模型评估分为分类模型评估和回归模型评估。
预测正确的数占样本总数的比例。
举例:
python 假设上面的房价预测,只有五个样本,对应的 真实值为:100,120,125,230,400 预测值为:105,119,120,230,410
那么使用均方根误差求解得: R M S E = [ ( 1 0 0 − 1 0 5 ) 2 + ( 1 2 0 − 1 1 9 ) 2 + 5 2 + 0 2 + 1 0 2 ] 5 2 = 5 . 4 9 5 RMSE=\sqrt[2]{\frac{[(100-105)^2+(120-119)^2+5^2+0^2+10^2]}{5}} =5.495 RMSE=2√5[(100−105)2+(120−119)2+52+02+102]=5.495
模型评估用于评价训练好的的模型的表现效果,其表现效果大致可以分为两类:过拟合、欠拟合。
在训练过程中,你可能会遇到如下问题:
当算法在某个数据集当中出现这种情况,可能就出现了拟合问题。
因为机器学习到的天鹅特征太少了,导致区分标准太粗糙,不能准确识别出天鹅。
欠拟合(under-fitting):模型学习的太过粗糙,连训练集中的样本数据特征关系都没有学出来。
机器已经基本能区别天鹅和其他动物了。然后,很不巧已有的天鹅图片全是白天鹅的,于是机器经过学习后,会认为天鹅的羽毛都是白的,以后看到羽毛是黑的天鹅就会认为那不是天鹅。
过拟合(over-fitting):所建的机器学习模型或者是深度学习模型在训练样本中表现得过于优越,导致在测试数据集中表现不佳。
上问题解答:
训练数据训练的很好啊,误差也不大,为什么在测试集上面有问题呢?
分类模型评估【了解】
准确率
回归模型评估【了解】
RMSE -- 均方根误差
拟合【知道】
举例 -- 判断是否是人
欠拟合
过拟合
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。