赞
踩
随着人们对环境保护意识的不断提高,垃圾分类已经成为了全球范围内的一个热门话题。为了提高垃圾分类的效率和准确性,我们开发了一款基于单片机的智能垃圾桶,它能够自动识别垃圾种类并进行分类。
智能垃圾桶的原理是通过内置的传感器和单片机控制系统,识别垃圾种类并进行分类。我们采用了图像处理技术和机器学习算法,使用OpenCV和TensorFlow框架构建了一个卷积神经网络(CNN)模型。该模型通过训练数据集,学习垃圾图像的特征,从而能够准确地识别垃圾种类。
以下是我们使用的Arduino代码,用于控制智能垃圾桶的传感器和执行分类操作:
#include <Servo.h> #include <SoftwareSerial.h> #include <Wire.h> #include <Adafruit_SSD1306.h> #include <Adafruit_GFX.h> #include <TensorFlowLite.h> #include <tensorflow/lite/experimental/micro/kernels/all_ops_resolver.h> #include <tensorflow/lite/experimental/micro/micro_error_reporter.h> #include <tensorflow/lite/experimental/micro/micro_interpreter.h> #include <tensorflow/lite/schema/schema_generated.h> #include <tensorflow/lite/version.h> #define OLED_RESET 4 Adafruit_SSD1306 display(OLED_RESET); #define SERVO_PIN 5 Servo myservo; #define TRIGGER_PIN 6 #define ECHO_PIN 7 #define MAX_DISTANCE 200 SoftwareSerial mySerial(8, 9); // RX, TX const int kNumCols = 128; const int kNumRows = 128; const int kNumChannels = 3; const int kTensorArenaSize = 60 * 1024; uint8_t tensor_arena[kTensorArenaSize]; const char* labels[] = {"cardboard", "glass", "metal", "paper", "plastic", "trash"}; const tflite::Model* model = tflite::GetModel(garbage_classification_tflite); tflite::MicroErrorReporter micro_error_reporter; tflite::MicroInterpreter* interpreter = nullptr; TfLiteTensor* input = nullptr; TfLiteTensor* output = nullptr; void setup() { Serial.begin(9600); myservo.attach(SERVO_PIN); pinMode(TRIGGER_PIN, OUTPUT); pinMode(ECHO_PIN, INPUT); display.begin(SSD1306_SWITCHCAPVCC, 0x3C); display.clearDisplay(); display.display(); mySerial.begin(9600); static tflite::MicroOpResolver<6> micro_op_resolver; micro_op_resolver.AddConv2D(); micro_op_resolver.AddMaxPool2D(); micro_op_resolver.AddReshape(); micro_op_resolver.AddFullyConnected(); micro_op_resolver.AddSoftmax(); micro_op_resolver.AddQuantize(); static tflite::MicroInterpreter static_interpreter( model, micro_op_resolver, tensor_arena, kTensorArenaSize, µ_error_reporter); interpreter = &static_interpreter; interpreter->AllocateTensors(); input = interpreter->input(0); output = interpreter->output(0); } void loop() { long duration, distance; digitalWrite(TRIGGER_PIN, LOW); delayMicroseconds(2); digitalWrite(TRIGGER_PIN, HIGH); delayMicroseconds(10); digitalWrite(TRIGGER_PIN, LOW); duration = pulseIn(ECHO_PIN, HIGH); distance = duration / 58; if (distance <= MAX_DISTANCE) { myservo.write(90); delay(500); uint8_t image[kNumCols * kNumRows * kNumChannels]; for (int i = 0; i < kNumCols * kNumRows * kNumChannels; i++) { image[i] = mySerial.read(); } for (int i = 0; i < kNumCols * kNumRows * kNumChannels; i++) { input->data.int8[i] = (image[i] - 128) / 128.0f; } TfLiteStatus invoke_status = interpreter->Invoke(); if (invoke_status != kTfLiteOk) { Serial.println("Invoke failed!"); return; } int max_index = 0; float max_value = -1; for (int i = 0; i < 6; i++) { float value = output->data.f[i]; if (value > max_value) { max_value = value; max_index = i; } } display.clearDisplay(); display.setTextSize(1); display.setTextColor(WHITE); display.setCursor(0, 0); display.println("Detected:"); display.println(labels[max_index]); display.display(); } else { myservo.write(0); } }
基于单片机的智能垃圾桶,通过使用图像处理技术和机器学习算法,实现了对垃圾种类的自动识别和分类。该项目的实现过程中,我们使用了Arduino开发板和TensorFlowLite框架,构建了一个卷积神经网络模型,通过传感器获取垃圾图像,并将其输入到模型中进行分类。未来,基于单片机的智能垃圾桶的应用前景将会越来越广阔,为城市环境保护事业做出更大的贡献。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。