当前位置:   article > 正文

python数据预处理_DataFrame数据筛选loc,iloc,ix,at,iat_dataframe postion iloc

dataframe postion iloc


众所周知 pandasDataFrame数据结构提供了功能强大的数据操作功能,例如运算,筛选,统计等。
今天我们就来谈一谈其强大的数据筛选功能,主要包括两大类, 按照条件筛选按照索引筛选。可以 对行进行筛选,也可以 按照列进行筛选

import numpy as np
import pandas as pd


df = pd.DataFrame({"a": list(range(1,10,1)),"b": list(range(2,11,1)),"c": list(range(3,12,1))})
  • 1
  • 2
  • 3
  • 4
  • 5
df
  • 1
abc
0123
1234
2345
3456
4567
5678
6789
78910
891011

1.条件筛选

1.1 单条件筛选
  • 如果选取a列的取值大于3的记录可以这么写
df[df['a']>3]
  • 1
abc
3456
4567
5678
6789
78910
891011
  • 如果想筛选a列的取值大于3的记录,但是只显示满足条件的b,c列的值可以这么写
df[['b','c']][df['a']>3]
  • 1
bc
356
467
578
689
7910
81011
  • 使用isin函数根据特定值筛选记录。筛选a值等于3或者5的记录
df[df.a.isin([3, 5])]
  • 1
abc
2345
4567
1.2 多条件筛选

可以使用&(并)|(或)操作符或者特定的函数实现多条件筛选

  • 使用&筛选a列的取值大于3,b列的取值大于6的记录
df[(df['a'] > 3) & (df['b'] > 6)]
  • 1
abc
5678
6789
78910
891011
  • 使用numpylogical_and函数完成同样的功能
df[np.logical_and(df['a']> 3,df['b']>6)]
  • 1
abc
5678
6789
78910
891011
1.3 排除特定行

筛选特定行做起来很方便,可以使用特定的函数完成,但是排除含特定值的行就需要做一些变通了。

例如,我们选出a列的值不等于3或者5的记录。基本的做法是将a列选择出来,把值3和5剔除,再使用isin函数。

ex_list = list(df['a'])

ex_list.remove(3)
ex_list.remove(5)
  • 1
  • 2
  • 3
  • 4
ex_list
  • 1
[1, 2, 4, 6, 7, 8, 9]
  • 1
df[df.a.isin(ex_list)]
  • 1
abc
0123
1234
3456
5678
6789
78910
891011

2. 索引筛选

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-M2hSGR4F-1571379379074)(E:\CQUPT\AI\python\jupyter notebook\Python数据科学\picture\iloc、loc、ix的使用(列切片及行切片).png)]

2.1 切片操作
# 使用切片操作选择特定的行
df[1:4]
  • 1
  • 2
abc
1234
2345
3456
# 传入列名选择特定的列
df[['a','c']]
  • 1
  • 2
ac
013
124
235
346
457
568
679
7810
8911
2.2 loc函数

当每列已有column name时,用 df ['a']就能选取出一整列数据。如果你知道column names和index(这里df的index没有指定,是默认生成的下标),且两者都很好输入,可以选择.loc同时进行行列选择。

df.loc[0,'c']
  • 1
3
  • 1
df.loc[1:4,['a','c']]
  • 1
ac
124
235
346
457
df.loc[[1,3,5],['a','c']]
  • 1
ac
124
346
568
2.3 iloc

如果column name太长,输入不方便,或者index是一列时间序列,更不好输入,那就可以选择 .iloc了,该方法接受列名的index,iloc使得我们可以对column使用slice(切片)的方法对数据进行选取。这边的 i 我觉得代表index,比较好记点。

df.iloc[0,2]
  • 1
3
  • 1
df.iloc[1:4,[0,2]]  # .iloc方法里面区间是前闭后开? .loc方法里面是闭区间?
  • 1
ac
124
235
346
df.iloc[[1,3,5],[0,2]]
  • 1
ac
124
346
568
df.iloc[[1,3,5],0:2]
  • 1
ab
123
345
567
2.4 ix函数

ix的功能更加强大,参数既可以是索引,也可以是名称,相当于,lociloc的合体。需要注意的是在使用的时候需要统一,在行选择时同时出现索引和名称, 同样在同行选择时同时出现索引和名称。

df.ix[1:3,['a','b']]
  • 1
e:\anaconda3.5\lib\site-packages\ipykernel_launcher.py:1: DeprecationWarning: 
.ix is deprecated. Please use
.loc for label based indexing or
.iloc for positional indexing

See the documentation here:
http://pandas.pydata.org/pandas-docs/stable/indexing.html#ix-indexer-is-deprecated
  """Entry point for launching an IPython kernel.
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
ab
123
234
345
df.ix[[1,3,5],['a','b']]
  • 1
ab
123
345
567
df.ix[[1,3,5],[0,2]]
  • 1
ac
124
346
568
2.5 at函数

根据指定行index及列label,快速定位DataFrame的元素,选择列时仅支持列名

df.at[3,'a']
  • 1
4
  • 1
2.6 iat函数

与at的功能相同,只使用索引参数。

df.iat[3,0]
  • 1
4
  • 1
df.iat[3,'a']
  • 1
---------------------------------------------------------------------------

ValueError                                Traceback (most recent call last)

<ipython-input-22-e644c9fe0a65> in <module>
----> 1 df.iat[3,'a']


e:\anaconda3.5\lib\site-packages\pandas\core\indexing.py in __getitem__(self, key)
   1783                 raise ValueError('Invalid call for scalar access (getting)!')
   1784 
-> 1785         key = self._convert_key(key)
   1786         return self.obj.get_value(*key, takeable=self._takeable)
   1787 


e:\anaconda3.5\lib\site-packages\pandas\core\indexing.py in _convert_key(self, key, is_setter)
   1852         for a, i in zip(self.obj.axes, key):
   1853             if not is_integer(i):
-> 1854                 raise ValueError("iAt based indexing can only have integer "
   1855                                  "indexers")
   1856         return key


ValueError: iAt based indexing can only have integer indexers
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/知新_RL/article/detail/210258
推荐阅读
相关标签
  

闽ICP备14008679号