当前位置:   article > 正文

利用本地模型使用 RAGAS 评估检索增强系统效果_ragas代码

ragas代码

前言

由于 RAGAS 官方代码的更新,原来的代码有一些不合适的地方。而且,之前的代码只提供了本地 API 调用的方式,这次给大家提供一个使用本地模型评估系统效果的代码

RAGAS 安装

我们目前使用的版本是 0.1.1, 直接使用 pip 进行安装就可以。

pip install ragas

  • 1
  • 2

新建数据集

RAGAS 需要使用 HuggingFace 标准的 dataset 的格式,因此我们可以根据现有的格式去构建自己的数据集或者读取 HF 上现有的数据集。

读取 HF 上的数据集

from datasets import load_dataset
 
fiqa_eval = load_dataset("explodinggradients/fiqa", "ragas_eval")['baseline']
fiqa_eval

  • 1
  • 2
  • 3
  • 4
  • 5

自己定义数据集

数据集包含下面四个列:

question: list[str], 这个是 RAG 系统中希望评测的问题。

answer: list[str],由 RAG 系统生成,并提供给用户的答案,也就是需要评测的答案。

contexts: list[list[str]], 传入 LLM 并回答问题的上下文。

ground_truths: list[list[str]]],问题的真实答案,这个在线评估的时候,可以忽略,因为我们无法有效获取真实的答案数据。

from datasets import Dataset

questions, answers, contexts, ground_truths = [], [], [], []
# The dataset in the format of ragas which the metrics will use to score the RAG pipeline with
evalsets = {
              "question": questions,
              "answer": answers,
              "contexts": contexts,
              "ground_truths": ground_truths
            }
evalsets = Dataset.from_dict(evalsets)

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

自定义本地的 LLM

RAGAS 高版本,需要实现 generate_text 以及 agenerate_text 这两个方法,其中,generate_text是一个同步的方法,而 agenerate_text 是一个异步的方法。

本地的 LLM,我们可以使用 transformers 这个库去调用,这里需要把 trust_remote_code 参数设置为 True。

class MyLLM(BaseRagasLLM):

    def __init__(self, llm_path):
        self.tokenizer = AutoTokenizer.from_pretrained(llm_path, trust_remote_code=True)
        self.base_llm = AutoModel.from_pretrained(llm_path, trust_remote_code=True).cuda()
        self.base_llm = self.base_llm.eval()

    @property
    def llm(self):
        return self.base_llm

    def get_llm_result(self, prompt):
        generations = []
        llm_output = {}
        token_total = 0
        content = prompt.to_string()
        text, history = self.base_llm.chat(self.tokenizer, content, history=[])
        generations.append([Generation(text=text)])
        token_total += len(text)
        llm_output['token_total'] = token_total
        return LLMResult(generations=generations, llm_output=llm_output)

    def generate_text(
            self,
            prompt: PromptValue,
            n: int = 1,
            temperature: float = 1e-8,
            stop: t.Optional[t.List[str]] = None,
            callbacks: Callbacks = [],
    ):
        result = self.get_llm_result(prompt)
        return result

    async def agenerate_text(
            self,
            prompt: PromptValue,
            n: int = 1,
            temperature: float = 1e-8,
            stop: t.Optional[t.List[str]] = None,
            callbacks: Callbacks = [],
    ) -> LLMResult:
        generations = []
        llm_output = {}
        token_total = 0
        content = prompt.to_string()
        text, history = await asyncio.get_event_loop().run_in_executor(None, self.base_llm.chat, self.tokenizer,
                                                                       content, [])

        generations.append([Generation(text=text)])
        token_total += len(text)
        llm_output['token_total'] = token_total
        result = LLMResult(generations=generations, llm_output=llm_output)
        return result

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54

最终代码

最终代码示例如下,只需要加载自己的数据,将 LLM 的路径和 embedding 的路径修改成自己本地的路径就可以。

import typing as t
import asyncio
from typing import List
from datasets import load_dataset, load_from_disk
from ragas.metrics import faithfulness, context_recall, context_precision
from ragas.metrics import AnswerRelevancy
from ragas import evaluate
from ragas.llms import BaseRagasLLM
from langchain.schema import LLMResult
from langchain.schema import Generation
from langchain.callbacks.base import Callbacks
from langchain.schema.embeddings import Embeddings
from FlagEmbedding import FlagModel
from transformers import AutoModel, AutoTokenizer
from ragas.llms.prompt import PromptValue

class MyLLM(BaseRagasLLM):

    def __init__(self, llm_path):
        self.tokenizer = AutoTokenizer.from_pretrained(llm_path, trust_remote_code=True)
        self.base_llm = AutoModel.from_pretrained(llm_path, trust_remote_code=True).cuda()
        self.base_llm = self.base_llm.eval()

    @property
    def llm(self):
        return self.base_llm

    def get_llm_result(self, prompt):
        generations = []
        llm_output = {}
        token_total = 0
        content = prompt.to_string()
        text, history = self.base_llm.chat(self.tokenizer, content, history=[])
        generations.append([Generation(text=text)])
        token_total += len(text)
        llm_output['token_total'] = token_total
        return LLMResult(generations=generations, llm_output=llm_output)

    def generate_text(
            self,
            prompt: PromptValue,
            n: int = 1,
            temperature: float = 1e-8,
            stop: t.Optional[t.List[str]] = None,
            callbacks: Callbacks = [],
    ):
        result = self.get_llm_result(prompt)
        return result

    async def agenerate_text(
            self,
            prompt: PromptValue,
            n: int = 1,
            temperature: float = 1e-8,
            stop: t.Optional[t.List[str]] = None,
            callbacks: Callbacks = [],
    ) -> LLMResult:
        generations = []
        llm_output = {}
        token_total = 0
        content = prompt.to_string()
        text, history = await asyncio.get_event_loop().run_in_executor(None, self.base_llm.chat, self.tokenizer,
                                                                       content, [])

        generations.append([Generation(text=text)])
        token_total += len(text)
        llm_output['token_total'] = token_total
        result = LLMResult(generations=generations, llm_output=llm_output)
        return result

class MyEmbedding(Embeddings):

    def __init__(self, path, max_length=512, batch_size=256):
        self.model = FlagModel(path, query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:")
        self.max_length = max_length
        self.batch_size = batch_size

    def embed_documents(self, texts: List[str]) -> List[List[float]]:
        return self.model.encode_corpus(texts, self.batch_size, self.max_length).tolist()

    def embed_query(self, text: str) -> List[float]:
        return self.model.encode_queries(text, self.batch_size, self.max_length).tolist()


data_path = "./fiqa_eval"
fiqa_eval = load_from_disk(data_path)
print(fiqa_eval)
llm_path = "/app/examples/pytorch/llm/output/chatglm3-6b"
emb_path = "/app/bge-large-zh"

embedding_model = MyEmbedding(emb_path)
my_llm = MyLLM(llm_path)

ans_relevancy = AnswerRelevancy()
faithfulness.llm = my_llm
context_recall.llm = my_llm
context_precision.llm = my_llm
ans_relevancy.llm = my_llm
ans_relevancy.embeddings = embedding_model

result = evaluate(
    fiqa_eval["baseline"].select(range(5)),
    metrics=[context_recall, context_precision, ans_relevancy, faithfulness]

)

df = result.to_pandas()
print(df.head())
df.to_csv("result.csv", index=False)

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110

那么,我们该如何学习大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

一、大模型全套的学习路线

学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳理知识,形成自己的体系。

L1级别:AI大模型时代的华丽登场

L2级别:AI大模型API应用开发工程

L3级别:大模型应用架构进阶实践

L4级别:大模型微调与私有化部署

一般掌握到第四个级别,市场上大多数岗位都是可以胜任,但要还不是天花板,天花板级别要求更加严格,对于算法和实战是非常苛刻的。建议普通人掌握到L4级别即可。

以上的AI大模型学习路线,不知道为什么发出来就有点糊,高清版可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

本文内容由网友自发贡献,转载请注明出处:【wpsshop博客】
推荐阅读
相关标签
  

闽ICP备14008679号