当前位置:   article > 正文

哈希的故事(三)_哈希算法 故事

哈希算法 故事

哈希函数的设计

哈希函数可以快速定位被查找元素的位置,这在海量数据的查找中至关重要,理想的搜索方法是不经过比较直接定位元素的地址,但如(一)中所说,哈希冲突是无法避免的,如何设计哈希函数区避免哈希冲突的产生?
哈希函数的设计原则应当是:

1、哈希函数的定义必须包括所要存储的元素的所有关键码,如果哈希散列表允许m个元素,则表的值域必须在0~m-1之间
2、哈希函数计算出的地址应当尽可能的均匀分布在空间中
3、哈希函数不应带来更大的复杂度,即函数设计简单

对于哈希函数来说,需要将整型数据作为关键字来求解索引。所以,不管什么类型的关键字,应该先将其转化为整型类型的数据。
对于小范围的整数而言,可以直接将其转换为对应的关键码,例如学号;对于存在的小范围的负数,可以整体偏移转变为正整数;对于大整数例如身份证号,可以使用模一个素数。关于如何取素数可见下图:
在这里插入图片描述
对于浮点型,可将其转换为大整数,取模;如果是字符串,这个字符串看成26进制,是因为有26个小写字母,如果字符串中有大写字母或者标点符号,那么看成26进制显然是不够的,可以看成是256进制。每一个字符应一个数字,这样我们把字符串也转化成了大整型,就可以计算哈希值了。

#例如26进制的code可表示为:
value(code)=2*26^3+15*24^2+4*26^1+5*26^0
hash(code)=value(code)%p
  • 1
  • 2
  • 3

上述公式可以进一步优化,优化方法可参考:https://www.jianshu.com/p/cccbf80e2629
关于复合类的哈希值计算则是将复合类的属性看作一个整体的字符串。

哈希负载因子&&扩容

哈希表应该在什么情况下扩容?如何扩容?
首先,要了解哈希哈希表扩容需要知道什么是哈希负载因子,定义:

α = 填 入 表 中 的 个 数 N 散 列 表 的 长 度 l e n g t h \alpha=\frac{填入表中的个数N}{散列表的长度length} α=lengthN

α \alpha α用来衡量哈希表“装满的程度”,由于表的长度是定值,所以 α \alpha α越大表示哈希表装的元素越多,产生冲突的可能性就越高,对于开放定址法而言 α \alpha α是非常重要的参数。

当超过此值时,就需要对哈希表进行扩容,问题在于如何确定 α \alpha α

wiki中这样描述:
α \alpha α超过0.8时,查表时CPU缓存不命中率按指数型上升,因此,通常将 α \alpha α的值设定在0.75,那么为什么选择了0.75作为的负载因子呢?这个跟一个统计学里很重要的原理——泊松分布有关。
选择0.75作为默认的加载因子,完全是时间和空间成本上寻求的一种折衷选择。

位图&&布隆过滤器

位图

所谓位图,就是用每一位来存放某种状态,适用于海量、无数据重复的场景。通常是用于判断某个数据是否存在。

布隆过滤器(Bloom Filter)

可以知道某样东西一定不存在或者可能存在,布隆过滤器是使用多个哈希函数将一个数据映射到位图中。需要注意的是,布隆过滤器一般不支持删除,因为在删除一个元素时会影响到其他元素。

哈希表在海量数据处理中的应用

参考自:https://www.cnblogs.com/jackchen-Net/p/8111817.html

  1. 数据量大,内存小情况(分而治之+Hash映射)
  2. 判断元素是否在集合中(布隆过滤器)
  3. TOP-k问题(存储+排序)

数据量大,内存小

(当给定了大数据量和内存限制解决方案:1.分而治之 2.利用Hash处理文件,大文件拆分为小文件3,对结果合并汇总)

1、海量日志数据,提取出某日访问百度次数最多的那个IP。

首先是这一天,并且是访问百度的日志中的IP取出来,逐个写入到一个大文件中。注意到IP是32位的,最多有个2^32个IP。同样可以采用映射的方法,比如模1000,把整个大文件映射为1000个小文件,再找出每个小文中出现频率最大的IP(可以采用hash_map进行频率统计,然后再找出频率最大的几个)及相应的频率。然后再在这1000个最大的IP中,找出那个频率最大的IP,即为所求。

算法思想:分而治之+Hash映射
1.IP地址最多有2^32=4G种取值情况,所以不能完全加载到内存中处理;
2.可以考虑采用“分而治之”的思想,按照IP地址的Hash(IP)%1024值,把海量IP日志分别存储到1024个小文件中。这样,每个小文件最多包含4MB个IP地址;
3.对于每一个小文件,可以构建一个IP为key,出现次数为value的Hash map,同时记录当前出现次数最多的那个IP地址;
4.可以得到1024个小文件中的出现次数最多的IP,再依据常规的排序算法得到总体上出现次数最多的IP;

2、搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。
假设目前有一千万个记录(这些查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个。一个查询串的重复度越高,说明查询它的用户越多,也就是越热门。),请你统计最热门的10个查询串,要求使用的内存不能超过1G。

典型的Top K算法:
第一步、先对这批海量数据预处理,在O(N)的时间内用Hash表完成统计;
第二步、借助堆这个数据结构,找出Top K,时间复杂度为N‘logK。
即,借助堆结构,我们可以在log量级的时间内查找和调整/移动。因此,维护一个K(该题目中是10)大小的小根堆,然后遍历300万的Query,分别和堆的根进行对比,当大于根时,将其调换。

3、有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M。返回频数最高的100个词。

方案:顺序读文件中,对于每个词x,取hash(x)%5000,然后按照该值存到5000个小文件(记为x0,x1,…x4999)中。这样每个文件大概是200k左右。

如果其中的有的文件超过了1M大小,还可以按照类似的方法继续往下分,直到分解得到的小文件的大小都不超过1M。
对每个小文件,统计每个文件中出现的词以及相应的频率(可以采用trie树/hash_map等),并取出出现频率最大的100个词(可以用含100个结点的最小堆),并把100个词及相应的频率存入文件,这样又得到了5000个文件。下一步就是把这5000个文件进行归并(类似与归并排序)的过程了。

4、有10个文件,每个文件1G,每个文件的每一行存放的都是用户的query,每个文件的query都可能重复。要求你按照query的频度排序。(top k)

方案1:
顺序读取10个文件,按照hash(query)%10的结果将query写入到另外10个文件(记为)中。这样新生成的文件每个的大小大约也1G(假设hash函数是随机的)。
找一台内存在2G左右的机器,依次对用hash_map(query, query_count)来统计每个query出现的次数。利用快速/堆/归并排序按照出现次数进行排序。将排序好的query和对应的query_cout输出到文件中。这样得到了10个排好序的文件(记为)。
对这10个文件进行归并排序(内排序与外排序相结合)。

方案2:
一般query的总量是有限的,只是重复的次数比较多而已,可能对于所有的query,一次性就可以加入到内存了。这样,我们就可以采用trie树/hash_map等直接来统计每个query出现的次数,然后按出现次数做快速/堆/归并排序就可以了。

方案3:
与方案1类似,但在做完hash,分成多个文件后,可以交给多个文件来处理,采用分布式的架构来处理(比如MapReduce),最后再进行合并。

5、 给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a、b文件共同的url?

方案1:

可以估计每个文件安的大小为5G×64=320G,远远大于内存限制的4G。所以不可能将其完全加载到内存中处理。考虑采取分而治之的方法。

遍历文件a,对每个url求取hash(url)%1000,然后根据所取得的值将url分别存储到1000个小文件(记为a0,a1,…,a999)中。这样每个小文件的大约为300M。

遍历文件b,采取和a相同的方式将url分别存储到1000小文件(记为b0,b1,…,b999)。这样处理后,所有可能相同的url都在对应的小文件(a0vsb0,a1vsb1,…,a999vsb999)中,不对应的小文件不可能有相同的url。然后我们只要求出1000对小文件中相同的url即可。

求每对小文件中相同的url时,可以把其中一个小文件的url存储到hash_set中。然后遍历另一个小文件的每个url,看其是否在刚才构建的hash_set中,如果是,那么就是共同的url,存到文件里面就可以了。

方案2:如果允许有一定的错误率,可以使用布隆过滤器,4G内存大概可以表示340亿bit。将其中一个文件中的url使用Bloom filter映射为这340亿bit,然后挨个读取另外一个文件的url,检查是否与Bloom filter,如果是,那么该url应该是共同的url(注意会有一定的错误率)。

6、在2.5亿个整数中找出不重复的整数,注,内存不足以容纳这2.5亿个整数。

方案1:采用2-Bitmap(每个数分配2bit,00表示不存在,01表示出现一次,10表示多次,11无意义)进行,共需内存2^32 * 2 bit=1 GB内存,还可以接受。然后扫描这2.5亿个整数,查看Bitmap中相对应位,如果是00变01,01变10,10保持不变。所描完事后,查看bitmap,把对应位是01的整数输出即可。

方案2:也可采用与第1问题类似的方法,进行划分小文件的方法。然后在小文件中找出不重复的整数,并排序。然后再进行归并,注意去除重复的元素。

7、腾讯面试题:给40亿个不重复的unsigned int的整数,没排过序的,然后再给一个数,如何快速判断这个数是否在那40亿个数当中?

方案1:使用位图
申请512M的内存,一个bit位代表一个unsigned int值。读入40亿个数,设置相应的bit位,读入要查询的数,查看相应bit位是否为1,为1表示存在,为0表示不存在。

8、怎么在海量数据中找出重复次数最多的一个?

先做hash,然后求模映射为小文件,求出每个小文件中重复次数最多的一个,并记录重复次数。然后找出上一步求出的数据中重复次数最多的一个就是所求(具体参考前面的题)。

9、上千万或上亿数据(有重复),统计其中出现次数最多的前N个数据。

上千万或上亿的数据,现在的机器的内存应该能存下。所以考虑采用hash_map/搜索二叉树/红黑树等来进行统计次数。然后就是取出前N个出现次数最多的数据了,可以用第2题提到的堆机制完成。

10、一个文本文件,大约有一万行,每行一个词,要求统计出其中最频繁出现的前10个词,请给出思想,给出时间复杂度分析。

这题是考虑时间效率。用trie树统计每个词出现的次数,时间复杂度是O(nle)(le表示单词的平准长度)。然后是找出出现最频繁的前10个词,可以用堆来实现,前面的题中已经讲到了,时间复杂度是O(nlg10)。所以总的时间复杂度,是O(nle)与O(nlg10)中较大的哪一个。

附、100w个数中找出最大的100个数。

方案1:在前面的题中,我们已经提到了,用一个含100个元素的最小堆完成。复杂度为O(100w*lg100)。

方案2:采用快速排序的思想,每次分割之后只考虑比轴大的一部分,知道比轴大的一部分在比100多的时候,采用传统排序算法排序,取前100个。复杂度为O(100w*100)。

方案3:采用局部淘汰法。选取前100个元素,并排序,记为序列L。然后一次扫描剩余的元素x,与排好序的100个元素中最小的元素比,如果比这个最小的要大,那么把这个最小的元素删除,并把x利用插入排序的思想,插入到序列L中。依次循环,知道扫描了所有的元素。复杂度为O(100w*100)。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/秋刀鱼在做梦/article/detail/830068
推荐阅读
相关标签
  

闽ICP备14008679号