当前位置:   article > 正文

Pytorch的x = x.view(x.size(0), -1) 的理解_self.avg_pool(x).view(x.size(0),-1

self.avg_pool(x).view(x.size(0),-1

之前对于pytorch的网络编程学习都是大致理解每一层的概念,有些语法语句没有从原理上弄清楚,就比如标题的x = x.view(x.size(0), -1)  。

这句话一般出现在model类的forward函数中,具体位置一般都是在调用分类器之前。分类器是一个简单的nn.Linear()结构,输入输出都是维度为一的值,x = x.view(x.size(0), -1)  这句话的出现就是为了将前面多维度的tensor展平成一维。下面是个简单的例子,我将会根据例子来对该语句进行解析。

  1. class NET(nn.Module):
  2. def __init__(self,batch_size):
  3. super(NET,self).__init__()
  4. self.conv = nn.Conv2d(outchannels=3,in_channels=64,kernel_size=3,stride=1)
  5. self.fc = nn.Linear(64*batch_size,10)
  6. def forward(self,x):
  7. x = self.conv(x)
  8. x = x.view(x.size(0), -1)
  9. out = self.fc(x)

上面是个简单的网络结构,包含一个卷积层和一个分类层。forward()函数中,input首先经过卷积层,此时的输出x是包含batchsize维度为4的tensor,即(batchsize,channels,x,y),x.size(0)指batchsize的值。 x = x.view(x.size(0), -1)简化x = x.view(batchsize, -1)。

view()函数的功能根reshape类似,用来转换size大小。x = x.view(batchsize, -1)中batchsize指转换后有几行,而-1指在不告诉函数有多少列的情况下,根据原tensor数据和batchsize自动分配列数。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/笔触狂放9/article/detail/290954?site
推荐阅读
相关标签
  

闽ICP备14008679号