赞
踩
首次处理英文语料,需要进行一些基础的NLP处理,首选工具当然是Stanford CoreNLP。由于Stanford CoreNLP官方示例的解析结果不宜直接使用,所以我在它的基础上进行修改,最终将解析结果转为json格式,并依照哈工大ltp的解析结果的格式,将依存句法的解析结果也添加到json中。
1、Stanford CoreNLP的安装
- import java.util.ArrayList;
- import java.util.HashMap;
- import java.util.List;
- import java.util.Map;
- import java.util.Properties;
- import java.util.regex.Matcher;
- import java.util.regex.Pattern;
- import net.sf.json.JSONArray;
- import edu.stanford.nlp.dcoref.CorefChain;
- import edu.stanford.nlp.ling.CoreAnnotations.CharacterOffsetBeginAnnotation;
- import edu.stanford.nlp.ling.CoreAnnotations.CharacterOffsetEndAnnotation;
- import edu.stanford.nlp.ling.CoreAnnotations.LemmaAnnotation;
- import edu.stanford.nlp.ling.CoreAnnotations.NamedEntityTagAnnotation;
- import edu.stanford.nlp.ling.CoreAnnotations.PartOfSpeechAnnotation;
- import edu.stanford.nlp.ling.CoreAnnotations.SentencesAnnotation;
- import edu.stanford.nlp.ling.CoreAnnotations.TextAnnotation;
- import edu.stanford.nlp.ling.CoreAnnotations.TokensAnnotation;
- import edu.stanford.nlp.ling.CoreLabel;
- import edu.stanford.nlp.pipeline.Annotation;
- import edu.stanford.nlp.pipeline.StanfordCoreNLP;
- import edu.stanford.nlp.semgraph.SemanticGraph;
- import edu.stanford.nlp.semgraph.SemanticGraphCoreAnnotations.CollapsedCCProcessedDependenciesAnnotation;
- import edu.stanford.nlp.trees.Tree;
- import edu.stanford.nlp.trees.TreeCoreAnnotations.TreeAnnotation;
- import edu.stanford.nlp.util.CoreMap;
-
- public class TestCoreNLP
- {
- //参数text为需要处理的句子
- public static void run(String text)
- {
- //创建一个corenlp对象,设置需要完成的任务。
- //tokenize: 分词;ssplit:分句;pos:词性标注;lemma:获取词原型;parse:句法解析(含依存句法);dcoref:同义指代
- Properties props = new Properties();
- props.put("annotators", "tokenize, ssplit, pos, lemma, ner, parse, dcoref");
- StanfordCoreNLP pipeline = new StanfordCoreNLP(props);
-
- // 创建一个基于参数句子的标注对象
- Annotation document = new Annotation(text);
-
- // 将上述标注对象将对corenlp进行处理
- pipeline.annotate(document);
-
- // 获取处理结果
- List<CoreMap> sentences = document.get(SentencesAnnotation.class);
-
- //遍历所有句子,输出每一句的处理结果
- for(CoreMap sentence: sentences)
- {
- //遍历句子中每一个词,获取其解析结果并构造json数据
- JSONArray jsonSent = new JSONArray(); //创建一个json数组,用于保存当前句子的最终所有解析结果
- int id=1;//当前词在句子中的id,从1开始,因为原始的解析结果就是从1开始的。
-
- //先获取当前句子的依存句法分析结果
- SemanticGraph dependencies = sentence.get(CollapsedCCProcessedDependenciesAnnotation.class);
- //遍历每一个词
- for (CoreLabel token: sentence.get(TokensAnnotation.class))
- {
- //获取每个词的分析结果
- Map mapWord = new HashMap();//创建一个map对象,用于保存当前词的解析结果
- mapWord.put("id", id);// 添加id值
- mapWord.put("cont", token.get(TextAnnotation.class));//添加词内容
- mapWord.put("pos", token.get(PartOfSpeechAnnotation.class));//添加词性标注值
- mapWord.put("ner", token.get(NamedEntityTagAnnotation.class));//添加实体识别值
- mapWord.put("lemma", token.get(LemmaAnnotation.class));//添加词原型
- mapWord.put("charBegin",token.get(CharacterOffsetBeginAnnotation.class));//添加词在句子中的起始位置
- mapWord.put("charEnd",token.get(CharacterOffsetEndAnnotation.class));//添加词在句子中的结束位置
-
- //查找每个词对应的依存关系。由于原始的解析结果中,依存关系是单独地集中在另一个字符串变量中的,形如: 依存关系名(被依赖词-被依赖词id,依赖词-依赖词id)\n 依存关系名(被依赖词-被依赖词id,依赖词-依赖词id)\n......需要对其进行解析,这里采用的方法是依据\n进行分割,然后再用正则表达式进行匹配,来逐一获取每一个词的依赖词和依存关系名
- int flag=0;//设置标志位,用于保存当前词的依存关系是否已经处理过,0未处理,1已处理
- String[] dArray= (dependencies.toString(SemanticGraph.OutputFormat.LIST)).split("\n");//根据\n进行分割,结果保存为字符串数组
- for (int i=0;i<dArray.length;i++) //遍历字符串数组
- {
- if(flag==1) //检查当前词的依存关系是否已经处理过,如果已处理,则直接退出遍历过程
- break;
- ArrayList dc=getDependencyContnet(dArray[i]);//获取数组中第i项,并从中获取依存关系名,被依赖词id和依赖词id,放到一个ArrayList中
- if( Integer.parseInt(String.valueOf(dc.get(2)))==id) //如果当前词id等于当前依存关系中的依赖词id,则说明找到对应的关系结构
- {
- mapWord.put("relation",dc.get(0));//添加依存关系名
- mapWord.put("parent",dc.get(1));//添加被依赖词id
- flag=1; // 将当前词依存关系标志设为1
- break;//退出遍历
- }
-
- }
-
- jsonSent.add( mapWord );//将上述结果全部添加到当前句中
- id++;//词id自增
- }
- System.out.println(jsonSent);
- // // 获取并打印句法解析树
- // Tree tree = sentence.get(TreeAnnotation.class);
- // System.out.println("\n"+tree.toString());
-
- // // 获取并打印依存句法的结果
- // System.out.println("\nDependency Graph:\n " +dependencies.toString(SemanticGraph.OutputFormat.LIST));
-
- // // 获取并打印实体指代结果
- // Map<Integer, CorefChain> graph = document.get(CorefChainAnnotation.class);
- // System.out.println(graph);
- }
- }
-
- //解析依存关系值的方法。如,从root(abc-1, efg-3)中获取一个ArrayList,值为[root,1,3]
- public static ArrayList getDependencyContnet(String sent)
- {
- String str=sent;
- ArrayList result=new ArrayList();
- String patternName="(.*)\\(";
- String patternGid="\\(.*-([0-9]*)\\,";
- String patternDid=".*-([0-9]*)\\)";
- Pattern r = Pattern.compile(patternName);
- Matcher m = r.matcher(str);
- if(m.find())
- {
- result.add(m.group(1));
- }
- r=Pattern.compile(patternGid);
- m = r.matcher(str);
- if(m.find())
- {
- result.add(m.group(1));
- }
- r=Pattern.compile(patternDid);
- m = r.matcher(str);
- if(m.find())
- {
- result.add(m.group(1));
- }
- return (result);
- }
- }
[{"id":1,"lemma":"Beijing","relation":"nsubj","parent":"4","ner":"LOCATION","charEnd":7,"cont":"Beijing","charBegin":0,"pos":"NNP"},{"id":2,"lemma":"be","relation":"cop","parent":"4","ner":"O","charEnd":10,"cont":"is","charBegin":8,"pos":"VBZ"},{"id":3,"lemma":"the","relation":"det","parent":"4","ner":"O","charEnd":14,"cont":"the","charBegin":11,"pos":"DT"},{"id":4,"lemma":"capital","relation":"root","parent":"0","ner":"O","charEnd":22,"cont":"capital","charBegin":15,"pos":"NN"},{"id":5,"lemma":"of","ner":"O","charEnd":25,"cont":"of","charBegin":23,"pos":"IN"},{"id":6,"lemma":"China","relation":"prep_of","parent":"4","ner":"LOCATION","charEnd":31,"cont":"China","charBegin":26,"pos":"NNP"},{"id":7,"lemma":".","ner":"O","charEnd":32,"cont":".","charBegin":31,"pos":"."}]
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。