赞
踩
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
)
.setDeliveryGuarantee(DeliveryGuarantee.AT\_LEAST\_ONCE)
.build();
stream.sinkTo(sink);
以下属性在构建 KafkaSink 时是必须指定的:
Bootstrap servers, setBootstrapServers(String)
消息序列化器(Serializer), setRecordSerializer(KafkaRecordSerializationSchema)
如果使用DeliveryGuarantee.EXACTLY_ONCE 的语义保证,则需要使用 setTransactionalIdPrefix(String)
## 04 序列化器
1. 构建时需要提供 `KafkaRecordSerializationSchema` 来将输入数据转换为 Kafka 的 `ProducerRecord`。Flink 提供了 schema 构建器 以提供一些通用的组件,例如消息键(key)/消息体(value)序列化、topic 选择、消息分区,同样也可以通过实现对应的接口来进行更丰富的控制。
2. 其中消息体(value)序列化方法和 topic 的选择方法是必须指定的,此外也可以通过 `setKafkaKeySerializer(Serializer)` 或 `setKafkaValueSerializer(Serializer)` 来使用 Kafka 提供而非 Flink 提供的序列化器
KafkaRecordSerializationSchema.builder()
.setTopicSelector((element) -> {})
.setValueSerializationSchema(new SimpleStringSchema())
.setKeySerializationSchema(new SimpleStringSchema())
.setPartitioner(new FlinkFixedPartitioner())
.build();
05 容错恢复
KafkaSink
总共支持三种不同的语义保证(DeliveryGuarantee
)。对于 DeliveryGuarantee.AT_LEAST_ONCE
和 DeliveryGuarantee.EXACTLY_ONCE
,Flink checkpoint 必须启用。默认情况下 KafkaSink
使用 DeliveryGuarantee.NONE
。 以下是对不同语义保证的解释:
* `DeliveryGuarantee.NONE` 不提供任何保证:消息有可能会因 Kafka broker 的原因发生丢失或因 Flink 的故障发生重复。 * `DeliveryGuarantee.AT_LEAST_ONCE`: sink 在 checkpoint 时会等待 Kafka 缓冲区中的数据全部被 Kafka producer 确认。消息不会因 Kafka broker 端发生的事件而丢失,但可能会在 Flink 重启时重复,因为 Flink 会重新处理旧数据。 * `DeliveryGuarantee.EXACTLY_ONCE`: 该模式下,Kafka sink 会将所有数据通过在 checkpoint 时提交的事务写入。因此,如果 consumer 只读取已提交的数据(参见 Kafka consumer 配置 `isolation.level`),在 Flink 发生重启时不会发生数据重复。然而这会使数据在 checkpoint 完成时才会可见,因此请按需调整 checkpoint 的间隔。请确认事务 ID 的前缀(transactionIdPrefix)对不同的应用是唯一的,以保证不同作业的事务 不会互相影响!此外,强烈建议将 Kafka 的事务超时时间调整至远大于 checkpoint 最大间隔 + 最大重启时间,否则 Kafka 对未提交事务的过期处理会导致数据丢失。 ## 05 指标监控 Kafka sink 会在不同的[范围(Scope)]( )中汇报下列指标。 | 范围 | 指标 | 用户变量 | 描述 | 类型 | | --- | --- | --- | --- | --- | | 算子 | currentSendTime | n/a | 发送最近一条数据的耗时。该指标反映最后一条数据的瞬时值。 | Gauge | ## 06 项目源码实战 ### 6.1 包结构 ![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/04a49613acae4612b4930f0527e9d4ee.jpeg) ### 6.2 pom.xml依赖
4.0.0
<groupId>com.xsy</groupId> <artifactId>aurora_flink_connector_kafka</artifactId> <version>1.0-SNAPSHOT</version> <!--属性设置--> <properties> <!--java_JDK版本--> <java.version>11</java.version> <!--maven打包插件--> <maven.plugin.version>3.8.1</maven.plugin.version> <!--编译编码UTF-8--> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> <!--输出报告编码UTF-8--> <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding> <!--json数据格式处理工具--> <fastjson.version>1.2.75</fastjson.version> <!--log4j版本--> <log4j.version>2.17.1</log4j.version> <!--flink版本--> <flink.version>1.18.0</flink.version> <!--scala版本--> <scala.binary.version>2.11</scala.binary.version> </properties> <!--通用依赖--> <dependencies> <!-- json --> <dependency> <groupId>com.alibaba</groupId> <artifactId>fastjson</artifactId> <version>${fastjson.version}</version> </dependency> <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-java --> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-java</artifactId> <version>${flink.version}</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-streaming-scala_2.12</artifactId> <version>${flink.version}</version> </dependency> <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-clients --> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-clients</artifactId> <version>${flink.version}</version> </dependency> <!--================================集成外部依赖==========================================--> <!--集成日志框架 start--> <dependency> <groupId>org.apache.logging.log4j</groupId> <artifactId>log4j-slf4j-impl</artifactId> <version>${log4j.version}</version> </dependency> <dependency> <groupId>org.apache.logging.log4j</groupId> <artifactId>log4j-api</artifactId> <version>${log4j.version}</version> </dependency> <dependency> <groupId>org.apache.logging.log4j</groupId> <artifactId>log4j-core</artifactId> <version>${log4j.version}</version> </dependency> <!--集成日志框架 end--> <!--kafka依赖 start--> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-connector-kafka</artifactId> <version>3.0.2-1.18</version> </dependency> <!--kafka依赖 end--> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-connector-base</artifactId> <version>1.18.0</version> </dependency> </dependencies> <!--编译打包--> <build> <finalName>${project.name}</finalName> <!--资源文件打包--> <resources> <resource> <directory>src/main/resources</directory> </resource> <resource> <directory>src/main/java</directory> <includes> <include>**/*.xml</include> </includes> </resource> </resources> <plugins> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-shade-plugin</artifactId> <version>3.1.1</version> <executions> <execution> <phase>package</phase> <goals> <goal>shade</goal> </goals> <configuration> <artifactSet> <excludes> <exclude>org.apache.flink:force-shading</exclude> <exclude>org.google.code.flindbugs:jar305</exclude> <exclude>org.slf4j:*</exclude> <excluder>org.apache.logging.log4j:*</excluder> </excludes> </artifactSet> <filters> <filter> <artifact>*:*</artifact> <excludes> <exclude>META-INF/*.SF</exclude> <exclude>META-INF/*.DSA</exclude> <exclude>META-INF/*.RSA</exclude> </excludes> </filter> </filters> <transformers> <transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer"> <mainClass>org.aurora.KafkaStreamingJob</mainClass> </transformer> </transformers> </configuration> </execution> </executions> </plugin> </plugins> <!--插件统一管理--> <pluginManagement> <plugins> <!--maven打包插件--> <plugin> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-maven-plugin</artifactId> <version>${spring.boot.version}</version> <configuration> <fork>true</fork> <finalName>${project.build.finalName}</finalName> </configuration> <executions> <execution> <goals> <goal>repackage</goal> </goals> </execution> </executions> </plugin> <!--编译打包插件--> <plugin> <artifactId>maven-compiler-plugin</artifactId> <version>${maven.plugin.version}</version> <configuration> <source>${java.version}</source> <target>${java.version}</target> <encoding>UTF-8</encoding> <compilerArgs> <arg>-parameters</arg> </compilerArgs> </configuration> </plugin> </plugins> </pluginManagement> </build> <!--配置Maven项目中需要使用的远程仓库--> <repositories> <repository> <id>aliyun-repos</id> <url>https://maven.aliyun.com/nexus/content/groups/public/</url> <snapshots> <enabled>false</enabled> </snapshots> </repository> </repositories> <!--用来配置maven插件的远程仓库--> <pluginRepositories> <pluginRepository> <id>aliyun-plugin</id> <url>https://maven.aliyun.com/nexus/content/groups/public/</url> <snapshots> <enabled>false</enabled> </snapshots> </pluginRepository> </pluginRepositories>
### 6.3 配置文件
(1)application.properties
#kafka集群地址
kafka.bootstrapServers=localhost:9092
#kafka主题
kafka.topic=topic_a
#kafka消费者组
kafka.group=aurora_group
(2)log4j2.properties
rootLogger.level=INFO
rootLogger.appenderRef.console.ref=ConsoleAppender
appender.console.name=ConsoleAppender
appender.console.type=CONSOLE
appender.console.layout.type=PatternLayout
appender.console.layout.pattern=%d{HH:mm:ss,SSS} %-5p %-60c %x - %m%n
log.file=D:\tmprootLogger.level=INFO
rootLogger.appenderRef.console.ref=ConsoleAppender
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
[外链图片转存中…(img-6xWbYwNA-1715800802363)]
[外链图片转存中…(img-bXEBvHjq-1715800802364)]
[外链图片转存中…(img-teS1HhAs-1715800802364)]
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。