赞
踩
目录
以下是采用 MATLAB 实现 TCN 时间卷积神经网络的时序分类预测的代码示例。
首先,我们需要导入相关的库和数据。本示例采用的是 UCI 的电力负载数据集。
- % 导入相关库和数据
- clear all;
- addpath(genpath(pwd))
- load('ElectricDevices_TRAIN.mat')
- load('ElectricDevices_TEST.mat')
- X_train = permute(X,[2 3 1]);
- Y_train = Y + 1;
- X_test = permute(X,[2 3 1]);
- Y_test = Y + 1;
接着,我们定义 TCN 网络模型的结构,并编写相应的训练和测试函数。
- %% 定义 TCN 网络结构
- function layers = tcnLayers(inputSize,numFilters,filterSize,dilationFactor)
-
- inputLayer = sequenceInputLayer(inputSize,'Name','input');
-
- layers = [inputLayer];
-
- for i=1:numel(numFilters)
- for j=1:numel(filterSize)
- if j == 1 && i == 1
- convLayer = convolution1dLayer(filterSize(j),numFilters(i),'Name',"conv" + int2str(i) + "_" + int2str(j),'Padding',0,"DilationFactor", dilationFactor(j));
- elseif j == numel(filterSize)
- convLayer = convolution1dLayer(filterSize(j),numFilters(i),'Name',"conv" + int2str(i) + "_" + int2str(j),'Padding',0);
- else
- convLayer = convolution1dLayer(filterSize(j),numFilters(i),'Name',"conv" + int2str(i) + "_" + int2str(j),'Padding',0,"DilationFactor", dilationFactor(j));
- end
- layers = [layers; convLayer; batchNormalizationLayer("Name","bn" + int2str(i) + "_" + int2str(j))];
- layers = [layers; reluLayer("Name","relu" + int2str(i) + "_" + int2str(j))];
- end
- end
-
- % global average pooling layer
- gapLayer = averagePooling1dLayer(sum(dilationFactor),"Name","gap");
- layers = [layers; gapLayer];
-
- % fully connected layer
- fcLayer = fullyConnectedLayer(8,'Name','fc');
- layers = [layers; fcLayer];
-
- % softmax layer
- softmaxLayer = softmaxLayer('Name','softmax');
- layers = [layers; softmaxLayer];
-
- % classification layer
- classificationLayer = classificationLayer('Name','classification');
- layers = [layers; classificationLayer];
-
- %% 训练网络
- function [net,info] = trainTcnNet(X_train,Y_train,X_val,Y_val,numFilters,filterSize,dilationFactor,maxEpochs,miniBatchSize)
-
- numFeatures = size(X_train,2);
- outputSize = size(Y_train,1);
-
- % define the network architecture
- layers = tcnLayers(numFeatures,numFilters,filterSize,dilationFactor);
-
- % training options
- options = trainingOptions('adam', ...
- 'MaxEpochs',maxEpochs, ...
- 'MiniBatchSize',miniBatchSize, ...
- 'Shuffle','never', ...
- 'ValidationData',{X_val,Y_val}, ...
- 'ValidationFrequency',10, ...
- 'Plots','training-progress');
-
- % train the network
- [net, info] = trainNetwork(X_train,categorical(Y_train),layers,options);
-
- end
-
- %% 测试网络
- function [YPred,acc] = testTcnNet(net,X_test,Y_test)
-
- % predict the labels of test data
- YPred = classify(net,X_test);
- acc = sum(YPred == categorical(Y_test))/numel(Y_test);
-
- end
接下来,我们定义并调用训练和测试函数,并输出模型准确率作为最终结果。
- % 训练 TCN 网络
- numFilters = [16 32 64];
- filterSize = [3 3 3];
- dilationFactor = [1 2 4];
- maxEpochs = 10;
- miniBatchSize = 64;
- [net,info] = trainTcnNet(X_train,Y_train,X_test,Y_test,numFilters,filterSize,dilationFactor,maxEpochs,miniBatchSize);
-
- % 测试 TCN 网络
- [YPred,acc] = testTcnNet(net,X_test,Y_test);
-
- % 输出模型准确率
- fprintf('Accuracy: %.2f%%.\n', acc*100);
赞
踩
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。