当前位置:   article > 正文

【分类模型】详解时间卷积神经网络的时序分类预测模型_matlabtcn代码

matlabtcn代码

目录

MATLAB实现TCN时间卷积神经网络的时序分类预测


MATLAB实现TCN时间卷积神经网络的时序分类预测

以下是采用 MATLAB 实现 TCN 时间卷积神经网络的时序分类预测的代码示例。

首先,我们需要导入相关的库和数据。本示例采用的是 UCI 的电力负载数据集。

  1. % 导入相关库和数据
  2. clear all;
  3. addpath(genpath(pwd))
  4. load('ElectricDevices_TRAIN.mat')
  5. load('ElectricDevices_TEST.mat')
  6. X_train = permute(X,[2 3 1]);
  7. Y_train = Y + 1;
  8. X_test = permute(X,[2 3 1]);
  9. Y_test = Y + 1;

接着,我们定义 TCN 网络模型的结构,并编写相应的训练和测试函数。

  1. %% 定义 TCN 网络结构
  2. function layers = tcnLayers(inputSize,numFilters,filterSize,dilationFactor)
  3. inputLayer = sequenceInputLayer(inputSize,'Name','input');
  4. layers = [inputLayer];
  5. for i=1:numel(numFilters)
  6. for j=1:numel(filterSize)
  7. if j == 1 && i == 1
  8. convLayer = convolution1dLayer(filterSize(j),numFilters(i),'Name',"conv" + int2str(i) + "_" + int2str(j),'Padding',0,"DilationFactor", dilationFactor(j));
  9. elseif j == numel(filterSize)
  10. convLayer = convolution1dLayer(filterSize(j),numFilters(i),'Name',"conv" + int2str(i) + "_" + int2str(j),'Padding',0);
  11. else
  12. convLayer = convolution1dLayer(filterSize(j),numFilters(i),'Name',"conv" + int2str(i) + "_" + int2str(j),'Padding',0,"DilationFactor", dilationFactor(j));
  13. end
  14. layers = [layers; convLayer; batchNormalizationLayer("Name","bn" + int2str(i) + "_" + int2str(j))];
  15. layers = [layers; reluLayer("Name","relu" + int2str(i) + "_" + int2str(j))];
  16. end
  17. end
  18. % global average pooling layer
  19. gapLayer = averagePooling1dLayer(sum(dilationFactor),"Name","gap");
  20. layers = [layers; gapLayer];
  21. % fully connected layer
  22. fcLayer = fullyConnectedLayer(8,'Name','fc');
  23. layers = [layers; fcLayer];
  24. % softmax layer
  25. softmaxLayer = softmaxLayer('Name','softmax');
  26. layers = [layers; softmaxLayer];
  27. % classification layer
  28. classificationLayer = classificationLayer('Name','classification');
  29. layers = [layers; classificationLayer];
  30. %% 训练网络
  31. function [net,info] = trainTcnNet(X_train,Y_train,X_val,Y_val,numFilters,filterSize,dilationFactor,maxEpochs,miniBatchSize)
  32. numFeatures = size(X_train,2);
  33. outputSize = size(Y_train,1);
  34. % define the network architecture
  35. layers = tcnLayers(numFeatures,numFilters,filterSize,dilationFactor);
  36. % training options
  37. options = trainingOptions('adam', ...
  38. 'MaxEpochs',maxEpochs, ...
  39. 'MiniBatchSize',miniBatchSize, ...
  40. 'Shuffle','never', ...
  41. 'ValidationData',{X_val,Y_val}, ...
  42. 'ValidationFrequency',10, ...
  43. 'Plots','training-progress');
  44. % train the network
  45. [net, info] = trainNetwork(X_train,categorical(Y_train),layers,options);
  46. end
  47. %% 测试网络
  48. function [YPred,acc] = testTcnNet(net,X_test,Y_test)
  49. % predict the labels of test data
  50. YPred = classify(net,X_test);
  51. acc = sum(YPred == categorical(Y_test))/numel(Y_test);
  52. end

接下来,我们定义并调用训练和测试函数,并输出模型准确率作为最终结果。

  1. % 训练 TCN 网络
  2. numFilters = [16 32 64];
  3. filterSize = [3 3 3];
  4. dilationFactor = [1 2 4];
  5. maxEpochs = 10;
  6. miniBatchSize = 64;
  7. [net,info] = trainTcnNet(X_train,Y_train,X_test,Y_test,numFilters,filterSize,dilationFactor,maxEpochs,miniBatchSize);
  8. % 测试 TCN 网络
  9. [YPred,acc] = testTcnNet(net,X_test,Y_test);
  10. % 输出模型准确率
  11. fprintf('Accuracy: %.2f%%.\n', acc*100);
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/繁依Fanyi0/article/detail/273440?site
推荐阅读
相关标签
  

闽ICP备14008679号