当前位置:   article > 正文

Vit极简原理+pytorch代码_vit代码pytorch

vit代码pytorch

Vit比它爹Transformer步骤要简单的多,需要注意的点也要少得多,最令人兴奋的是它在代码中没有令人头疼的MASK,还有许多简化的操作,容我慢慢道来。

原理

1、打成patch+线性变化

它所解决的核心问题就是如何将图片塞入Transformer,如果每个像素作为输入的话,那么一个小小的224*224的图片的序列长度就会是50176,而nlp的Transformer最初设定长度才是512,并且attention的复杂度是平方级的,这50176令人不敢恭维。Vit无非就是将一张图片打成一个一个的patch,将每个patch作为一个输入,仅此而已。

将图片打成patch可以通过很简单的卷积实现。使用卷积核大小为16*16,步长为16,卷积核数维768。

用维度来说明一下。假如一个224*224的图片,每个patch的大小是16*16,那么最终只有(224/16)*(224/16)=196个输入,每一个输入的dim是16*16*3=768,3是rgb通道数。

2、cls token+位置编码

那么Vit怎么进行分类?可以像bert一样在最前面增加一个cls token,最后只用cls token经过Encoder的结果。

位置编码的方法使用的可学习的方法,并且作者炼丹后发现一维,二维,相对位置编码的结果差不多,为了简单使用一维位置编码。

  self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))

3、 Encoder+分类

与transformer的Encoder不同,这里是先norm再attention,并且不存在padding。并且还有一点需要注意,在这里的q,k,v通过同一个Linear得到,不像Transformer中需要分别进行Linear得到,因为它不需要解决Decoder中的交叉注意力中kv和q来源不同的情况,这样可以提高我们的训练速度。还有一点值得注意的是,在Vit中的kqv矩阵维度相同,这样可以得到全局感受野但是计算量大。

最后分类只用cls token的输出

代码

我在前人的基础上进一步增加了一些注释,补全了维度变换。

我认为想彻底搞懂Vit光靠看几个视频,几个文章肯定是不行的。强烈建议亲自调试一遍,点步入步过按钮一步一步运行,将每一步的维度变换理解才是重中之重。下面的代码你只需要在最后一行打个断点就能直接调试,希望对大家能有帮助!

  1. """
  2. original code from rwightman:
  3. https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
  4. """
  5. from functools import partial
  6. from collections import OrderedDict
  7. import torch
  8. import torch.nn as nn
  9. class PatchEmbed(nn.Module):
  10. """
  11. 2D Image to Patch Embedding
  12. """
  13. def __init__(self, img_size=224, patch_size=16, in_c=3, embed_dim=768, norm_layer=None):
  14. super().__init__()
  15. img_size = (img_size, img_size) # [224,224]
  16. patch_size = (patch_size, patch_size) # [16,16]
  17. self.img_size = img_size # [224,224]
  18. self.patch_size = patch_size # [16,16]
  19. self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) # [14,14]
  20. self.num_patches = self.grid_size[0] * self.grid_size[1] # 196
  21. self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size) # 3,768,(16,16),16
  22. self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
  23. def forward(self, x):
  24. B, C, H, W = x.shape
  25. assert H == self.img_size[0] and W == self.img_size[1], \
  26. f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
  27. # proj:[B,3,224,224] -> [B,768,14,14]
  28. # flatten: [B, 768, 14, 14] -> [B, 768, 196]
  29. # transpose: [B, 768, 196] -> [B, 196, 768]
  30. x = self.proj(x).flatten(2).transpose(1, 2)
  31. x = self.norm(x)
  32. return x
  33. class Attention(nn.Module):
  34. def __init__(self,
  35. dim, # 输入token的dim 768
  36. num_heads=8, # multi-head 12
  37. qkv_bias=False, # True
  38. qk_scale=None, # 和根号dimk作用相同
  39. attn_drop_ratio=0., # dropout率
  40. proj_drop_ratio=0.):
  41. super(Attention, self).__init__()
  42. self.num_heads = num_heads
  43. head_dim = dim // num_heads # 768 // 12 = 64
  44. self.scale = qk_scale or head_dim ** -0.5
  45. self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) # qkv经过一个linear得到。 768 --> 2304
  46. self.attn_drop = nn.Dropout(attn_drop_ratio)
  47. self.proj = nn.Linear(dim, dim) # 一次新的映射
  48. self.proj_drop = nn.Dropout(proj_drop_ratio)
  49. def forward(self, x):
  50. # [batch_size, num_patches + 1, total_embed_dim]
  51. B, N, C = x.shape
  52. # qkv(): -> [batch_size, num_patches + 1, 3 * total_embed_dim]
  53. # reshape: -> [batch_size, num_patches + 1, 3, num_heads, embed_dim_per_head]
  54. # permute: -> [3, batch_size, num_heads, num_patches + 1, embed_dim_per_head]
  55. qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
  56. # [batch_size, num_heads, num_patches + 1, embed_dim_per_head]
  57. q, k, v = qkv[0], qkv[1], qkv[2] # 在Vit中qkv维度相同,都是[B,12,197,64]
  58. # transpose: -> [batch_size, num_heads, embed_dim_per_head, num_patches + 1]
  59. # @: multiply -> [batch_size, num_heads, num_patches + 1, num_patches + 1]
  60. attn = (q @ k.transpose(-2, -1)) * self.scale
  61. # 按行进行softmax
  62. attn = attn.softmax(dim=-1)
  63. attn = self.attn_drop(attn)
  64. # @: multiply -> [batch_size, num_heads, num_patches + 1, embed_dim_per_head]
  65. # transpose: -> [batch_size, num_patches + 1, num_heads, embed_dim_per_head]
  66. # reshape: -> [batch_size, num_patches + 1, total_embed_dim]
  67. # C就是total_embed_dim
  68. x = (attn @ v).transpose(1, 2).reshape(B, N, C)
  69. # 再通过一次映射使其更好的融合
  70. x = self.proj(x)
  71. x = self.proj_drop(x)
  72. return x
  73. class Mlp(nn.Module):
  74. """
  75. MLP as used in Vision Transformer, MLP-Mixer and related networks
  76. """
  77. def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
  78. super().__init__()
  79. out_features = out_features or in_features # 768
  80. hidden_features = hidden_features or in_features # 3072
  81. self.fc1 = nn.Linear(in_features, hidden_features) # 768 --> 3072
  82. self.act = act_layer()
  83. self.fc2 = nn.Linear(hidden_features, out_features) # 3072 --> 768
  84. self.drop = nn.Dropout(drop)
  85. def forward(self, x):
  86. x = self.fc1(x)
  87. x = self.act(x)
  88. x = self.drop(x)
  89. x = self.fc2(x)
  90. x = self.drop(x)
  91. return x
  92. class Block(nn.Module):
  93. def __init__(self,
  94. dim,
  95. num_heads,
  96. mlp_ratio=4.,
  97. qkv_bias=False,
  98. qk_scale=None,
  99. drop_ratio=0.,
  100. attn_drop_ratio=0.,
  101. drop_path_ratio=0.,
  102. act_layer=nn.GELU,
  103. norm_layer=nn.LayerNorm):
  104. super(Block, self).__init__()
  105. self.norm1 = norm_layer(dim) # 与Transformer不同,这里先norm
  106. self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
  107. attn_drop_ratio=attn_drop_ratio, proj_drop_ratio=drop_ratio)
  108. # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
  109. self.drop_path = DropPath(drop_path_ratio) if drop_path_ratio > 0. else nn.Identity()
  110. self.norm2 = norm_layer(dim)
  111. mlp_hidden_dim = int(dim * mlp_ratio) # 隐藏层神经元数
  112. self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop_ratio) # MLP
  113. def forward(self, x):
  114. # 残差连接
  115. x = x + self.drop_path(self.attn(self.norm1(x)))
  116. x = x + self.drop_path(self.mlp(self.norm2(x)))
  117. return x
  118. class VisionTransformer(nn.Module):
  119. def __init__(self, img_size=224, patch_size=16, in_c=3, num_classes=1000,
  120. embed_dim=768, depth=12, num_heads=12, mlp_ratio=4.0, qkv_bias=True,
  121. qk_scale=None, representation_size=None, distilled=False, drop_ratio=0.,
  122. attn_drop_ratio=0., drop_path_ratio=0., embed_layer=PatchEmbed, norm_layer=None,
  123. act_layer=None):
  124. """
  125. Args:
  126. img_size (int, tuple): input image size
  127. patch_size (int, tuple): patch size
  128. in_c (int): 输入通道数
  129. num_classes (int): 多分类数量
  130. embed_dim (int): embedding后维度
  131. depth (int): Encoder数量
  132. num_heads (int): multi-head头数
  133. mlp_ratio (int): mlp隐藏层维度是输入的多少倍
  134. qkv_bias (bool): qkv的Linear过程有没有偏置?
  135. qk_scale (float): 类似根号dimk
  136. representation_size (Optional[int]): MLP head是否只有一个全连接层,对应Pre-logits,是一个可选项
  137. distilled (bool): 用于Deit的,与Vit无关
  138. drop_ratio (float): dropout rate
  139. attn_drop_ratio (float): attention dropout rate
  140. drop_path_ratio (float): stochastic depth rate
  141. embed_layer (nn.Module): Embedding层
  142. norm_layer: (nn.Module): normalization层
  143. """
  144. super(VisionTransformer, self).__init__()
  145. self.num_classes = num_classes # 1000
  146. self.num_features = self.embed_dim = embed_dim # 768
  147. self.num_tokens = 2 if distilled else 1 # 不管
  148. norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
  149. act_layer = act_layer or nn.GELU
  150. # 224,16,3,768
  151. self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_c=in_c, embed_dim=embed_dim)
  152. num_patches = self.patch_embed.num_patches # 196
  153. self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) # 1,1,768
  154. self.dist_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if distilled else None # 不管
  155. self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim)) # 位置编码,注意要+1(cls token)
  156. self.pos_drop = nn.Dropout(p=drop_ratio) # 位置编码后的dropout
  157. dpr = [x.item() for x in torch.linspace(0, drop_path_ratio, depth)] # 构建一个dropout的等差序列,但默认为0
  158. # *可以解引用
  159. self.blocks = nn.Sequential(*[
  160. Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
  161. drop_ratio=drop_ratio, attn_drop_ratio=attn_drop_ratio, drop_path_ratio=dpr[i],
  162. norm_layer=norm_layer, act_layer=act_layer)
  163. for i in range(depth)
  164. ])
  165. self.norm = norm_layer(embed_dim)
  166. # 之前所说的可选项,略过
  167. if representation_size and not distilled:
  168. self.has_logits = True
  169. self.num_features = representation_size
  170. self.pre_logits = nn.Sequential(OrderedDict([
  171. ("fc", nn.Linear(embed_dim, representation_size)),
  172. ("act", nn.Tanh())
  173. ]))
  174. else:
  175. self.has_logits = False
  176. self.pre_logits = nn.Identity() # 什么也不做
  177. # 分类,不用管else 768 --> 1000
  178. self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
  179. # 以下与Vit无关 //开始
  180. self.head_dist = None
  181. if distilled:
  182. self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity()
  183. # 结束//
  184. # 权重初始化
  185. nn.init.trunc_normal_(self.pos_embed, std=0.02) # 位置编码
  186. if self.dist_token is not None:
  187. nn.init.trunc_normal_(self.dist_token, std=0.02)
  188. nn.init.trunc_normal_(self.cls_token, std=0.02) # cls token
  189. self.apply(_init_vit_weights)
  190. def forward_features(self, x):
  191. # [B, C, H, W] -> [B, num_patches, embed_dim]
  192. x = self.patch_embed(x) # [B, 196, 768]
  193. # [1, 1, 768] -> [B, 1, 768]
  194. cls_token = self.cls_token.expand(x.shape[0], -1, -1)
  195. if self.dist_token is None:
  196. x = torch.cat((cls_token, x), dim=1) # [B, 197, 768]
  197. else:
  198. x = torch.cat((cls_token, self.dist_token.expand(x.shape[0], -1, -1), x), dim=1)
  199. x = self.pos_drop(x + self.pos_embed)
  200. x = self.blocks(x)
  201. x = self.norm(x)
  202. if self.dist_token is None:
  203. return self.pre_logits(x[:, 0])
  204. else:
  205. return x[:, 0], x[:, 1]
  206. def forward(self, x):
  207. x = self.forward_features(x)
  208. if self.head_dist is not None:
  209. x, x_dist = self.head(x[0]), self.head_dist(x[1])
  210. if self.training and not torch.jit.is_scripting():
  211. # during inference, return the average of both classifier predictions
  212. return x, x_dist
  213. else:
  214. return (x + x_dist) / 2
  215. else:
  216. x = self.head(x)
  217. return x
  218. def _init_vit_weights(m):
  219. """
  220. ViT weight initialization
  221. :param m: module
  222. """
  223. if isinstance(m, nn.Linear):
  224. nn.init.trunc_normal_(m.weight, std=.01)
  225. if m.bias is not None:
  226. nn.init.zeros_(m.bias)
  227. elif isinstance(m, nn.Conv2d):
  228. nn.init.kaiming_normal_(m.weight, mode="fan_out")
  229. if m.bias is not None:
  230. nn.init.zeros_(m.bias)
  231. elif isinstance(m, nn.LayerNorm):
  232. nn.init.zeros_(m.bias)
  233. nn.init.ones_(m.weight)
  234. def drop_path(x, drop_prob: float = 0., training: bool = False):
  235. """
  236. Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
  237. This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
  238. the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
  239. See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
  240. changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
  241. 'survival rate' as the argument.
  242. """
  243. if drop_prob == 0. or not training:
  244. return x
  245. keep_prob = 1 - drop_prob
  246. shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
  247. random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
  248. random_tensor.floor_() # binarize
  249. output = x.div(keep_prob) * random_tensor
  250. return output
  251. class DropPath(nn.Module):
  252. """
  253. Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
  254. """
  255. def __init__(self, drop_prob=None):
  256. super(DropPath, self).__init__()
  257. self.drop_prob = drop_prob
  258. def forward(self, x):
  259. return drop_path(x, self.drop_prob, self.training)
  260. def vit_base_patch16_224(num_classes: int = 1000):
  261. """
  262. ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
  263. ImageNet-1k weights @ 224x224, source https://github.com/google-research/vision_transformer.
  264. weights ported from official Google JAX impl:
  265. 链接: https://pan.baidu.com/s/1zqb08naP0RPqqfSXfkB2EA 密码: eu9f
  266. """
  267. model = VisionTransformer(img_size=224,
  268. patch_size=16,
  269. embed_dim=768,
  270. depth=12,
  271. num_heads=12,
  272. representation_size=None,
  273. num_classes=num_classes)
  274. return model
  275. vit_base_patch16_224()

文章仅供学习使用

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/繁依Fanyi0/article/detail/345759?site
推荐阅读
相关标签
  

闽ICP备14008679号