当前位置:   article > 正文

科技提升安全,基于YOLOv8全系列模型【n/s/m/l/x】开发构建商超扶梯场景下行人安全行为姿态检测识别系统_yolov8 s n x l

yolov8 s n x l

在商超等人流量较为密集的场景下经常会报道出现一些行人在扶梯上摔倒、受伤等问题,随着AI技术的快速发展与不断普及,越来越多的商超、地铁等场景开始加装专用的安全检测预警系统,核心工作原理即使AI模型与摄像头图像视频流的实时计算,通过对行为扶梯上的行为进行实时检测识别来对出现的危险行为进行快速预警响应避免后续出现严重的后果。本文的主要目的就是想要基于商超扶梯场景来开发构建行人安全行为检测识别系统,探索分析基于AI科技提升安全保障的可行性,本文是AI助力商超扶梯等场景安全提升的第七篇文章,前文系列如下:

  1. 《科技提升安全,基于SSD开发构建商超扶梯场景下行人安全行为姿态检测识别系统》
  2. https://blog.csdn.net/Together_CZ/article/details/134892776
  3. 《科技提升安全,基于YOLOv3开发构建商超扶梯场景下行人安全行为姿态检测识别系统》 
  4. https://blog.csdn.net/Together_CZ/article/details/134892866
  5. 《科技提升安全,基于YOLOv4开发构建商超扶梯场景下行人安全行为姿态检测识别系统》
  6. https://blog.csdn.net/Together_CZ/article/details/134893058
  7. 《科技提升安全,基于YOLOv5系列模型【n/s/m/l/x】开发构建商超扶梯场景下行人安全行为姿态检测识别系统》
  8. https://blog.csdn.net/Together_CZ/article/details/134918766
  9. 《科技提升安全,基于YOLOv6开发构建商超扶梯场景下行人安全行为姿态检测识别系统》
  10. https://blog.csdn.net/Together_CZ/article/details/134925452
  11. 《科技提升安全,基于YOLOv7【tiny/yolov7/yolov7x】开发构建商超扶梯场景下行人安全行为姿态检测识别系统》
  12. https://blog.csdn.net/Together_CZ/article/details/134926357

首先看下实例效果:

实例数据集如下所示:

共包含4种不同类型的目标对象,如下所示:

  1. bow
  2. down
  3. shake
  4. up

如果对YOLOv8开发构建自己的目标检测项目有疑问的可以看下面的文章,如下所示:

《基于YOLOv8开发构建目标检测模型超详细教程【以焊缝质量检测数据场景为例】》

非常详细的开发实践教程。本文这里就不再展开了,因为从YOLOv8开始变成了一个安装包的形式,整体跟v5和v7的使用差异还是比较大的。

YOLOv8核心特性和改动如下:
1、提供了一个全新的SOTA模型(state-of-the-art model),包括 P5 640 和 P6 1280 分辨率的目标检测网络和基于YOLACT的实例分割模型。和 YOLOv5 一样,基于缩放系数也提供了 N/S/M/L/X 尺度的不同大小模型,用于满足不同场景需求
2、骨干网络和 Neck 部分可能参考了 YOLOv7 ELAN 设计思想,将 YOLOv5 的 C3 结构换成了梯度流更丰富的 C2f 结构,并对不同尺度模型调整了不同的通道数,属于对模型结构精心微调,不再是一套参数应用所有模型,大幅提升了模型性能。
3、Head 部分相比 YOLOv5 改动较大,换成了目前主流的解耦头结构,将分类和检测头分离,同时也从Anchor-Based 换成了 Anchor-Free
4、Loss 计算方面采用了TaskAlignedAssigner正样本分配策略,并引入了Distribution Focal Loss
5、训练的数据增强部分引入了 YOLOX 中的最后 10 epoch 关闭 Mosiac 增强的操作,可以有效地提升精度

官方项目地址在这里,如下所示:

目前已经收获超过1.6w的star量了。官方提供的预训练模型如下所示:

Modelsize
(pixels)
mAPval
50-95
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n64037.380.40.993.28.7
YOLOv8s64044.9128.41.2011.228.6
YOLOv8m64050.2234.71.8325.978.9
YOLOv8l64052.9375.22.3943.7165.2
YOLOv8x64053.9479.13.5368.2257.8

简单的实例实现如下所示:

  1. from ultralytics import YOLO
  2. # yolov8n
  3. model = YOLO('yolov8n.yaml').load('yolov8n.pt') # build from YAML and transfer weights
  4. model.train(data='data/self.yaml', epochs=100, imgsz=640)
  5. # yolov8s
  6. model = YOLO('yolov8s.yaml').load('yolov8s.pt') # build from YAML and transfer weights
  7. model.train(data='data/self.yaml', epochs=100, imgsz=640)
  8. # yolov8m
  9. model = YOLO('yolov8m.yaml').load('yolov8m.pt') # build from YAML and transfer weights
  10. model.train(data='data/self.yaml', epochs=100, imgsz=640)
  11. # yolov8l
  12. model = YOLO('yolov8l.yaml').load('yolov8l.pt') # build from YAML and transfer weights
  13. model.train(data='data/self.yaml', epochs=100, imgsz=640)
  14. # yolov8x
  15. model = YOLO('yolov8x.yaml').load('yolov8x.pt') # build from YAML and transfer weights
  16. model.train(data='data/self.yaml', epochs=100, imgsz=640)

预训练模型可以到官方项目中自行下载即可。

五款不同参数量级的模型保持完全相同的训练参数配置,等待训练完成后,我们对其训练过程进行对比可视化,如下所示:

【mAP0.5】

mAP0.5(mean Average Precision at 0.5 intersection over union)是一种用于评估目标检测算法性能的指标。在目标检测任务中,mAP0.5衡量了检测算法在不同类别目标上的平均精度。

mAP0.5的计算过程包括以下几个步骤:

对于每个类别的目标,首先计算出每个检测结果的置信度(confidence)和相应的预测框的准确度(accuracy)。
根据置信度对检测结果进行排序,通常是按照置信度从高到低进行排序。
采用不同阈值(通常为0.5)作为IOU(Intersection over Union)的阈值,计算每个类别下的Precision-Recall曲线。
在Precision-Recall曲线上,计算出在不同召回率(Recall)下的平均精度(Average Precision)。
对所有类别的平均精度进行求平均,即得到mAP0.5指标。
mAP0.5的取值范围是0到1,数值越高表示检测算法在目标检测任务上的性能越好。它综合考虑了不同类别目标的精度和召回率,并对检测结果进行了排序和评估。

需要注意的是,mAP0.5只是mAP的一种变体,其中IOU阈值固定为0.5。在一些特定的目标检测任务中,可能会使用其他IOU阈值来计算mAP,例如mAP0.5:0.95表示使用IOU阈值从0.5到0.95的范围来计算平均精度。

接下来来看loss走势:

感兴趣的话也都可以自行尝试下!

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/羊村懒王/article/detail/298243
推荐阅读
相关标签
  

闽ICP备14008679号