赞
踩
目录
朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。统计机器学习的策略通常是期望风险最小化,实际学习过程中以经验风险近似期望风险(或加上正则化项)。在朴素贝叶斯方法中,期望风险最小化等价于后验概率最大化。
朴素贝叶斯分类器(Naïve Bayes Classifier)采用了“属性条件独立性 假设” ,即每个属性独立地对分类结果发生影响。为方便公式标记,不妨记P(C=c|X=x)为P(c|x),基于属性条件独立 性假设,贝叶斯公式可重写为:
– 其中d为属性数目,xi为 x 在第i个属性上的取值。
朴素贝叶斯分类器的训练器的训练过程就是基于训练集D估计类 先验概率P(c),并为每个属性估计条件概率P(xi丨c) 。
下面用一个实例来说明贝叶斯分类器的计算过程:
第一步:统计各个事件发生的次数。
第二步:计算先验概率和条件概率。
第三步:判别样例。
下面给出用贝叶斯分类器实现垃圾邮件分类的代码。
- '''
- Created on Oct 19, 2010
- @author: Peter
- '''
- from numpy import *
-
- def loadDataSet():
- postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
- ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
- ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
- ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
- ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
- ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
- classVec = [0,1,0,1,0,1] #1 is abusive, 0 not
- return postingList,classVec
-
- def createVocabList(dataSet):
- vocabSet = set([]) #create empty set
- for document in dataSet:
- vocabSet = vocabSet | set(document) #union of the two sets
- return list(vocabSet)
-
- def setOfWords2Vec(vocabList, inputSet):
- returnVec = [0]*len(vocabList)
- for word in inputSet:
- if word in vocabList:
- returnVec[vocabList.index(word)] = 1
- else: print ("the word: %s is not in my Vocabulary!" % word)
- return returnVec
-
- def trainNB0(trainMatrix,trainCategory):
- numTrainDocs = len(trainMatrix)
- numWords = len(trainMatrix[0])
- pAbusive = sum(trainCategory)/float(numTrainDocs)
- p0Num = ones(numWords); p1Num = ones(numWords) #change to ones()
- p0Denom = 2.0; p1Denom = 2.0 #change to 2.0
- for i in range(numTrainDocs):
- if trainCategory[i] == 1:
- p1Num += trainMatrix[i]
- p1Denom += sum(trainMatrix[i])
- else:
- p0Num += trainMatrix[i]
- p0Denom += sum(trainMatrix[i])
- p1Vect = log(p1Num/p1Denom) #change to log()
- p0Vect = log(p0Num/p0Denom) #change to log()
- return p0Vect,p1Vect,pAbusive
-
- def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
- p1 = sum(vec2Classify * p1Vec) + log(pClass1) #element-wise mult
- p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)
- if p1 > p0:
- return 1
- else:
- return 0
-
- def bagOfWords2VecMN(vocabList, inputSet):
- returnVec = [0]*len(vocabList)
- for word in inputSet:
- if word in vocabList:
- returnVec[vocabList.index(word)] += 1
- return returnVec
-
- def testingNB():
- listOPosts,listClasses = loadDataSet()
- myVocabList = createVocabList(listOPosts)
- trainMat=[]
- for postinDoc in listOPosts:
- trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
- p0V,p1V,pAb = trainNB0(array(trainMat),array(listClasses))
- testEntry = ['love', 'my', 'dalmation']
- thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
- print (testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb))
- testEntry = ['stupid', 'garbage']
- thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
- print (testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb))
-
- def textParse(bigString): #input is big string, #output is word list
- import re
- listOfTokens = re.split(r'\W*', bigString)
- return [tok.lower() for tok in listOfTokens if len(tok) > 2]
-
- def spamTest():
- docList=[]; classList = []; fullText =[]
- for i in range(1,26):
- wordList = textParse(open('email/spam/%d.txt' % i).read())
- docList.append(wordList)
- fullText.extend(wordList)
- classList.append(1)
- wordList = textParse(open('email/ham/%d.txt' % i).read())
- docList.append(wordList)
- fullText.extend(wordList)
- classList.append(0)
- vocabList = createVocabList(docList)#create vocabulary
- trainingSet = range(50); testSet=[] #create test set
- for i in range(10):
- randIndex = int(random.uniform(0,len(trainingSet)))
- testSet.append(trainingSet[randIndex])
- del(trainingSet[randIndex])
- trainMat=[]; trainClasses = []
- for docIndex in trainingSet:#train the classifier (get probs) trainNB0
- trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex]))
- trainClasses.append(classList[docIndex])
- p0V,p1V,pSpam = trainNB0(array(trainMat),array(trainClasses))
- errorCount = 0
- for docIndex in testSet: #classify the remaining items
- wordVector = bagOfWords2VecMN(vocabList, docList[docIndex])
- if classifyNB(array(wordVector),p0V,p1V,pSpam) != classList[docIndex]:
- errorCount += 1
- print ("classification error",docList[docIndex])
- print ('the error rate is: ',float(errorCount)/len(testSet))
- #return vocabList,fullText
-
- def calcMostFreq(vocabList,fullText):
- import operator
- freqDict = {}
- for token in vocabList:
- freqDict[token]=fullText.count(token)
- sortedFreq = sorted(freqDict.iteritems(), key=operator.itemgetter(1), reverse=True)
- return sortedFreq[:30]
-
- def localWords(feed1,feed0):
- import feedparser
- docList=[]; classList = []; fullText =[]
- minLen = min(len(feed1['entries']),len(feed0['entries']))
- for i in range(minLen):
- wordList = textParse(feed1['entries'][i]['summary'])
- docList.append(wordList)
- fullText.extend(wordList)
- classList.append(1) #NY is class 1
- wordList = textParse(feed0['entries'][i]['summary'])
- docList.append(wordList)
- fullText.extend(wordList)
- classList.append(0)
- vocabList = createVocabList(docList)#create vocabulary
- top30Words = calcMostFreq(vocabList,fullText) #remove top 30 words
- for pairW in top30Words:
- if pairW[0] in vocabList: vocabList.remove(pairW[0])
- trainingSet = range(2*minLen); testSet=[] #create test set
- for i in range(20):
- randIndex = int(random.uniform(0,len(trainingSet)))
- testSet.append(trainingSet[randIndex])
- del(trainingSet[randIndex])
- trainMat=[]; trainClasses = []
- for docIndex in trainingSet:#train the classifier (get probs) trainNB0
- trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex]))
- trainClasses.append(classList[docIndex])
- p0V,p1V,pSpam = trainNB0(array(trainMat),array(trainClasses))
- errorCount = 0
- for docIndex in testSet: #classify the remaining items
- wordVector = bagOfWords2VecMN(vocabList, docList[docIndex])
- if classifyNB(array(wordVector),p0V,p1V,pSpam) != classList[docIndex]:
- errorCount += 1
- print ('the error rate is: ',float(errorCount)/len(testSet))
- return vocabList,p0V,p1V
-
- def getTopWords(ny,sf):
- import operator
- vocabList,p0V,p1V=localWords(ny,sf)
- topNY=[]; topSF=[]
- for i in range(len(p0V)):
- if p0V[i] > -6.0 : topSF.append((vocabList[i],p0V[i]))
- if p1V[i] > -6.0 : topNY.append((vocabList[i],p1V[i]))
- sortedSF = sorted(topSF, key=lambda pair: pair[1], reverse=True)
- print ("SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**")
- for item in sortedSF:
- print (item[0])
- sortedNY = sorted(topNY, key=lambda pair: pair[1], reverse=True)
- print ("NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**")
- for item in sortedNY:
- print (item[0])
最后运行结果的错误率为
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。