简介
使用TensorFlow实现快速图像风格迁移(Fast Neural Style Transfer)
原理
在之前介绍的图像风格迁移中,我们根据内容图片和风格图片优化输入图片,使得内容损失函数和风格损失函数尽可能小
和DeepDream一样,属于网络参数不变,根据损失函数调整输入数据,因此每生成一张图片都相当于训练一个模型,需要很长时间
训练模型需要很长时间,而使用训练好的模型进行推断则很快
使用快速图像风格迁移可大大缩短生成一张迁移图片所需的时间,其模型结构如下,包括转换网络和损失网络
风格图片是固定的,而内容图片是可变的输入,因此以上模型用于将任意图片快速转换为指定风格的图片
- 转换网络:参数需要训练,将内容图片转换成迁移图片
- 损失网络:计算迁移图片和风格图片之间的风格损失,以及迁移图片和原始内容图片之间的内容损失
经过训练后,转换网络所生成的迁移图片,在内容上和输入的内容图片相似,在风格上和指定的风格图片相似
进行推断时,仅使用转换网络,输入内容图片,即可得到对应的迁移图片
如果有多个风格图片,对每个风格分别训练一个模型即可
实现
基于以下两个项目进行修改,github.com/lengstrom/f…、github.com/hzy46/fast-…
依然通过之前用过的imagenet-vgg-verydeep-19.mat
计算内容损失函数和风格损失函数
需要一些图片作为输入的内容图片,对图片具体内容没有任何要求,也不需要任何标注,这里选择使用MSCOCO数据集的train2014部分,cocodataset.org/#download,共82612张图片
加载库
- # -*- coding: utf-8 -*-
-
- import tensorflow as tf
- import numpy as np
- import cv2
- from imageio import imread, imsave
- import scipy.io
- import os
- import glob
- from tqdm import tqdm
- import matplotlib.pyplot as plt
- %matplotlib inline
- 复制代码
查看风格图片,共10张
- style_images = glob.glob('styles/*.jpg')
- print(style_images)
- 复制代码
加载内容图片,去掉黑白图片,处理成指定大小,暂时不进行归一化,像素值范围为0至255之间
- def resize_and_crop(image, image_size):
- h = image.shape[0]
- w = image.shape[1]
- if h > w:
- image = image[h // 2 - w // 2: h // 2 + w // 2, :, :]
- else:
- image = image[:, w // 2 - h // 2: w // 2 + h // 2, :]
- image = cv2.resize(image, (image_size, image_size))
- return image
-
- X_data = []
- image_size = 256
- paths = glob.glob('train2014/*.jpg')
- for i in tqdm(range(len(paths))):
- path = paths[i]
- image = imread(path)
- if len(image.shape) < 3:
- continue
- X_data.append(resize_and_crop(image, image_size))
- X_data = np.array(X_data)
- print(X_data.shape)
- 复制代码
加载vgg19模型,并定义一个函数,对于给定的输入,返回vgg19各个层的输出值,就像在GAN中那样,通过variable_scope
重用实现网络的重用
- vgg = scipy.io.loadmat('imagenet-vgg-verydeep-19.mat')
- vgg_layers = vgg['layers']
-
- def vgg_endpoints(inputs, reuse=None):
- with tf.variable_scope('endpoints', reuse=reuse):
- def _weights(layer, expected_layer_name):
- W = vgg_layers[0][layer][0][0][2][0][0]
- b = vgg_layers[0][layer][0][0][2][0][1]
- layer_name = vgg_layers[0][layer][0][0][0][0]
- assert layer_name == expected_layer_name
- return W, b
-
- def _conv2d_relu(prev_layer, layer, layer_name):
- W, b = _weights(layer, layer_name)
- W = tf.constant(W)
- b = tf.constant(np.reshape(b, (b.size)))
- return tf.nn.relu(tf.nn.conv2d(prev_layer, filter=W, strides=[1, 1, 1, 1], padding='SAME') + b)
-
- def _avgpool(prev_layer):
- return tf.nn.avg_pool(prev_layer, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
-
- graph = {}
- graph['conv1_1'] = _conv2d_relu(inputs, 0, 'conv1_1')
- graph['conv1_2'] = _conv2d_relu(graph['conv1_1'], 2, 'conv1_2')
- graph['avgpool1'] = _avgpool(graph['conv1_2'])
- graph['conv2_1'] = _conv2d_relu(graph['avgpool1'], 5, 'conv2_1')
- graph['conv2_2'] = _conv2d_relu(graph['conv2_1'], 7, 'conv2_2')
- graph['avgpool2'] = _avgpool(graph['conv2_2'])
- graph['conv3_1'] = _conv2d_relu(graph['avgpool2'], 10, 'conv3_1')
- graph['conv3_2'] = _conv2d_relu(graph['conv3_1'], 12, 'conv3_2')
- graph['conv3_3'] = _conv2d_relu(graph['conv3_2'], 14, 'conv3_3')
- graph['conv3_4'] = _conv2d_relu(graph['conv3_3'], 16, 'conv3_4')
- graph['avgpool3'] = _avgpool(graph['conv3_4'])
- graph['conv4_1'] = _conv2d_relu(graph['avgpool3'], 19, 'conv4_1')
- graph['conv4_2'] = _conv2d_relu(graph['conv4_1'], 21, 'conv4_2')
- graph['conv4_3'] = _conv2d_relu(graph['conv4_2'], 23, 'conv4_3')
- graph['conv4_4'] = _conv2d_relu(graph['conv4_3'], 25, 'conv4_4')
- graph['avgpool4'] = _avgpool(graph['conv4_4'])
- graph['conv5_1'] = _conv2d_relu(graph['avgpool4'], 28, 'conv5_1')
- graph['conv5_2'] = _conv2d_relu(graph['conv5_1'], 30, 'conv5_2')
- graph['conv5_3'] = _conv2d_relu(graph['conv5_2'], 32, 'conv5_3')
- graph['conv5_4'] = _conv2d_relu(graph['conv5_3'], 34, 'conv5_4')
- graph['avgpool5'] = _avgpool(graph['conv5_4'])
-
- return graph
- 复制代码
选择一张风格图,减去通道颜色均值后,得到风格图片在vgg19各个层的输出值,计算四个风格层对应的Gram矩阵
- style_index = 1
- X_style_data = resize_and_crop(imread(style_images[style_index]), image_size)
- X_style_data = np.expand_dims(X_style_data, 0)
- print(X_style_data.shape)
-
- MEAN_VALUES = np.array([123.68, 116.779, 103.939]).reshape((1, 1, 1, 3))
-
- X_style = tf.placeholder(dtype=tf.float32, shape=X_style_data.shape, name='X_style')
- style_endpoints = vgg_endpoints(X_style - MEAN_VALUES)
- STYLE_LAYERS = ['conv1_2', 'conv2_2', 'conv3_3', 'conv4_3']
- style_features = {}
-
- sess = tf.Session()
- for layer_name in STYLE_LAYERS:
- features = sess.run(style_endpoints[layer_name], feed_dict={X_style: X_style_data})
- features = np.reshape(features, (-1, features.shape[3]))
- gram = np.matmul(features.T, features) / features.size
- style_features[layer_name] = gram
- 复制代码
定义转换网络,典型的卷积、残差、逆卷积结构,内容图片输入之前也需要减去通道颜色均值
- batch_size = 4
- X = tf.placeholder(dtype=tf.float32, shape=[None, None, None, 3], name='X')
- k_initializer = tf.truncated_normal_initializer(0, 0.1)
-
- def relu(x):
- return tf.nn.relu(x)
-
- def conv2d(inputs, filters, kernel_size, strides):
- p = int(kernel_size / 2)
- h0 = tf.pad(inputs, [[0, 0], [p, p], [p, p], [0, 0]], mode='reflect')
- return tf.layers.conv2d(inputs=h0, filters=filters, kernel_size=kernel_size, strides=strides, padding='valid', kernel_initializer=k_initializer)
-
- def deconv2d(inputs, filters, kernel_size, strides):
- shape = tf.shape(inputs)
- height, width = shape[1], shape[2]
- h0 = tf.image.resize_images(inputs, [height * strides * 2, width * strides * 2], tf.image.ResizeMethod.NEAREST_NEIGHBOR)
- return conv2d(h0, filters, kernel_size, strides)
-
- def instance_norm(inputs):
- return tf.contrib.layers.instance_norm(inputs)
-
- def residual(inputs, filters, kernel_size):
- h0 = relu(conv2d(inputs, filters, kernel_size, 1))
- h0 = conv2d(h0, filters, kernel_size, 1)
- return tf.add(inputs, h0)
-
- with tf.variable_scope('transformer', reuse=None):
- h0 = tf.pad(X - MEAN_VALUES, [[0, 0], [10, 10], [10, 10], [0, 0]], mode='reflect')
- h0 = relu(instance_norm(conv2d(h0, 32, 9, 1)))
- h0 = relu(instance_norm(conv2d(h0, 64, 3, 2)))
- h0 = relu(instance_norm(conv2d(h0, 128, 3, 2)))
-
- for i in range(5):
- h0 = residual(h0, 128, 3)
-
- h0 = relu(instance_norm(deconv2d(h0, 64, 3, 2)))
- h0 = relu(instance_norm(deconv2d(h0, 32, 3, 2)))
- h0 = tf.nn.tanh(instance_norm(conv2d(h0, 3, 9, 1)))
- h0 = (h0 + 1) / 2 * 255.
- shape = tf.shape(h0)
- g = tf.slice(h0, [0, 10, 10, 0], [-1, shape[1] - 20, shape[2] - 20, -1], name='g')
- 复制代码
将转换网络的输出即迁移图片,以及原始内容图片都输入到vgg19,得到各自对应层的输出,计算内容损失函数
- CONTENT_LAYER = 'conv3_3'
- content_endpoints = vgg_endpoints(X - MEAN_VALUES, True)
- g_endpoints = vgg_endpoints(g - MEAN_VALUES, True)
-
- def get_content_loss(endpoints_x, endpoints_y, layer_name):
- x = endpoints_x[layer_name]
- y = endpoints_y[layer_name]
- return 2 * tf.nn.l2_loss(x - y) / tf.to_float(tf.size(x))
-
- content_loss = get_content_loss(content_endpoints, g_endpoints, CONTENT_LAYER)
- 复制代码
根据迁移图片和风格图片在指定风格层的输出,计算风格损失函数
- style_loss = []
- for layer_name in STYLE_LAYERS:
- layer = g_endpoints[layer_name]
- shape = tf.shape(layer)
- bs, height, width, channel = shape[0], shape[1], shape[2], shape[3]
-
- features = tf.reshape(layer, (bs, height * width, channel))
- gram = tf.matmul(tf.transpose(features, (0, 2, 1)), features) / tf.to_float(height * width * channel)
-
- style_gram = style_features[layer_name]
- style_loss.append(2 * tf.nn.l2_loss(gram - style_gram) / tf.to_float(tf.size(layer)))
-
- style_loss = tf.reduce_sum(style_loss)
- 复制代码
计算全变差正则,得到总的损失函数
- def get_total_variation_loss(inputs):
- h = inputs[:, :-1, :, :] - inputs[:, 1:, :, :]
- w = inputs[:, :, :-1, :] - inputs[:, :, 1:, :]
- return tf.nn.l2_loss(h) / tf.to_float(tf.size(h)) + tf.nn.l2_loss(w) / tf.to_float(tf.size(w))
-
- total_variation_loss = get_total_variation_loss(g)
-
- content_weight = 1
- style_weight = 250
- total_variation_weight = 0.01
-
- loss = content_weight * content_loss + style_weight * style_loss + total_variation_weight * total_variation_loss
- 复制代码
定义优化器,通过调整转换网络中的参数降低总损失
- vars_t = [var for var in tf.trainable_variables() if var.name.startswith('transformer')]
- optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss, var_list=vars_t)
- 复制代码
训练模型,每轮训练结束后,用一张测试图片进行测试,并且将一些tensor的值写入events文件,便于使用tensorboard查看
- style_name = style_images[style_index]
- style_name = style_name[style_name.find('/') + 1:].rstrip('.jpg')
- OUTPUT_DIR = 'samples_%s' % style_name
- if not os.path.exists(OUTPUT_DIR):
- os.mkdir(OUTPUT_DIR)
-
- tf.summary.scalar('losses/content_loss', content_loss)
- tf.summary.scalar('losses/style_loss', style_loss)
- tf.summary.scalar('losses/total_variation_loss', total_variation_loss)
- tf.summary.scalar('losses/loss', loss)
- tf.summary.scalar('weighted_losses/weighted_content_loss', content_weight * content_loss)
- tf.summary.scalar('weighted_losses/weighted_style_loss', style_weight * style_loss)
- tf.summary.scalar('weighted_losses/weighted_total_variation_loss', total_variation_weight * total_variation_loss)
- tf.summary.image('transformed', g)
- tf.summary.image('origin', X)
- summary = tf.summary.merge_all()
- writer = tf.summary.FileWriter(OUTPUT_DIR)
-
- sess.run(tf.global_variables_initializer())
- losses = []
- epochs = 2
-
- X_sample = imread('sjtu.jpg')
- h_sample = X_sample.shape[0]
- w_sample = X_sample.shape[1]
-
- for e in range(epochs):
- data_index = np.arange(X_data.shape[0])
- np.random.shuffle(data_index)
- X_data = X_data[data_index]
-
- for i in tqdm(range(X_data.shape[0] // batch_size)):
- X_batch = X_data[i * batch_size: i * batch_size + batch_size]
- ls_, _ = sess.run([loss, optimizer], feed_dict={X: X_batch})
- losses.append(ls_)
-
- if i > 0 and i % 20 == 0:
- writer.add_summary(sess.run(summary, feed_dict={X: X_batch}), e * X_data.shape[0] // batch_size + i)
- writer.flush()
-
- print('Epoch %d Loss %f' % (e, np.mean(losses)))
- losses = []
-
- gen_img = sess.run(g, feed_dict={X: [X_sample]})[0]
- gen_img = np.clip(gen_img, 0, 255)
- result = np.zeros((h_sample, w_sample * 2, 3))
- result[:, :w_sample, :] = X_sample / 255.
- result[:, w_sample:, :] = gen_img[:h_sample, :w_sample, :] / 255.
- plt.axis('off')
- plt.imshow(result)
- plt.show()
- imsave(os.path.join(OUTPUT_DIR, 'sample_%d.jpg' % e), result)
- 复制代码
保存模型
- saver = tf.train.Saver()
- saver.save(sess, os.path.join(OUTPUT_DIR, 'fast_style_transfer'))
- 复制代码
测试图片依旧是之前用过的交大庙门
风格迁移结果
训练过程中可以使用tensorboard查看训练过程
- tensorboard --logdir=samples_starry
- 复制代码
在单机上使用以下代码即可快速完成风格迁移,在CPU上也只需要10秒左右
- # -*- coding: utf-8 -*-
-
- import tensorflow as tf
- import numpy as np
- from imageio import imread, imsave
- import os
- import time
-
- def the_current_time():
- print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(int(time.time()))))
-
- style = 'wave'
- model = 'samples_%s' % style
- content_image = 'sjtu.jpg'
- result_image = 'sjtu_%s.jpg' % style
- X_image = imread(content_image)
-
- sess = tf.Session()
- sess.run(tf.global_variables_initializer())
-
- saver = tf.train.import_meta_graph(os.path.join(model, 'fast_style_transfer.meta'))
- saver.restore(sess, tf.train.latest_checkpoint(model))
-
- graph = tf.get_default_graph()
- X = graph.get_tensor_by_name('X:0')
- g = graph.get_tensor_by_name('transformer/g:0')
-
- the_current_time()
-
- gen_img = sess.run(g, feed_dict={X: [X_image]})[0]
- gen_img = np.clip(gen_img, 0, 255) / 255.
- imsave(result_image, gen_img)
-
- the_current_time()
- 复制代码
对于其他风格图片,用相同方法训练对应模型即可
参考
- Perceptual Losses for Real-Time Style Transfer and Super-Resolution:arxiv.org/abs/1603.08…
- Fast Style Transfer in TensorFlow:github.com/lengstrom/f…
- A Tensorflow Implementation for Fast Neural Style:github.com/hzy46/fast-…