当前位置:   article > 正文

pointnet 结果可视化_PointNet论文复现及代码详解

pointnet++ 可视化

写在前面

本文主要对PointNet(之前有解读论文)的代码进行了分析和解读,有助于进一步理解其思想。可以发现,PointNet的结构并不复杂,比起CNN还要简单一些。理解PointNet关键在于理解一维卷积在网络中的作用,本文对该部分进行了详细的说明。另外,可以看到,PointNet最大的缺陷就是没有考虑周围的局部信息,所有的卷积操作都是针对单个点的进行的。这一点在PointNet++中得到了关注,后面的文章会对其进行解读。

1. 代码下载

这部分很简单啦,github上作者放出了TensorFlow的版本,这里使用的是Pytorch的版本,链接如下:PointNet-Pytorch代码。

按照页面的指示把代码和数据集下载到本地。

2. 数据集

首先看一下数据集到底是什么样的,这里用的包含16类样本的ShapeNet。里面有好多个文件夹,每个文件夹里面放着同一类的样本,每个文件夹对应类别如下:

打开第一个Airplane的文件夹,里面很多.pts格式的文件,这就是不同飞机模型的点云格式,里面放的就是一个个坐标点,坐标是经过归一化的。

然后使用下载好的文件里面的一个可视化代码,稍微修改一下,看一看数据到底长什么样。下图是一个飞机和一个包。

针对分类问题,在训练时直接读取点数据及类别。在dataloader里面,

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/菜鸟追梦旅行/article/detail/519245
推荐阅读
相关标签
  

闽ICP备14008679号