当前位置:   article > 正文

NLP进阶,Bert+BiLSTM情感分析实战,Python经典面试题详解_bilstm bert

bilstm bert

self.fc = nn.Linear(hidden_dim*2, output_size)

else:

self.fc = nn.Linear(hidden_dim, output_size)

#self.sig = nn.Sigmoid()

def forward(self, x, hidden):

batch_size = x.size(0)

#生成bert字向量

x=self.bert(x)[0] #bert 字向量

lstm_out

#x = x.float()

lstm_out, (hidden_last,cn_last) = self.lstm(x, hidden)

#print(lstm_out.shape) #[32,100,768]

#print(hidden_last.shape) #[4, 32, 384]

#print(cn_last.shape) #[4, 32, 384]

#修改 双向的需要单独处理

if self.bidirectional:

#正向最后一层,最后一个时刻

hidden_last_L=hidden_last[-2]

#print(hidden_last_L.shape) #[32, 384]

#反向最后一层,最后一个时刻

hidden_last_R=hidden_last[-1]

#print(hidden_last_R.shape) #[32, 384]

#进行拼接

hidden_last_out=torch.cat([hidden_last_L,hidden_last_R],dim=-1)

#print(hidden_last_out.shape,‘hidden_last_out’) #[32, 768]

else:

hidden_last_out=hidden_last[-1] #[32, 384]

dropout and fully-connected layer

out = self.dropout(hidden_last_out)

#print(out.shape) #[32,768]

out = self.fc(out)

return out

def init_hidden(self, batch_size):

weight = next(self.parameters()).data

number = 1

if self.bidirectional:

number = 2

if (USE_CUDA):

hidden = (weight.new(self.n_layers*number, batch_size, self.hidden_dim).zero_().float().cuda(),

weight.new(self.n_layers*number, batch_size, self.hidden_dim).zero_().float().cuda()

)

else:

hidden = (weight.new(self.n_layers*number, batch_size, self.hidden_dim).zero_().float(),

weight.new(self.n_layers*number, batch_size, self.hidden_dim).zero_().float()

)

return hidden

bert_lstm需要的参数功6个,参数说明如下:

–bertpath:bert预训练模型的路径

–hidden_dim:隐藏层的数量。

–output_size:分类的个数。

–n_layers:lstm的层数

–bidirectional:是否是双向lstm

–drop_prob:dropout的参数

定义bert的参数,如下:

class ModelConfig:

batch_size = 2

output_size = 2

hidden_dim = 384 #768/2

n_layers = 2

lr = 2e-5

bidirectional = True #这里为True,为双向LSTM

training params

epochs = 10

batch_size=50

print_every = 10

clip=5 # gradient clipping

use_cuda = USE_CUDA

bert_path = ‘bert-base-chinese’ #预训练bert路径

save_path = ‘bert_bilstm.pth’ #模型保存路径

batch_size:batchsize的大小,根据显存设置。

output_size:输出的类别个数,本例是2.

hidden_dim:隐藏层的数量。

n_layers:lstm的层数。

bidirectional:是否双向

print_every:输出的间隔。

use_cuda:是否使用cuda,默认使用,不用cuda太慢了。

bert_path:预训练模型存放的文件夹。

save_path:模型保存的路径。

配置环境

===============================================================

需要下载transformers和sentencepiece,执行命令:

conda install sentencepiece

conda install transformers

数据集切分

================================================================

数据集按照7:3,切分为训练集和测试集,然后又将测试集按照1:1切分为验证集和测试集。

代码如下:

model_config = ModelConfig()

data=pd.read_csv(‘caipindianping.csv’,encoding=‘utf-8’)

result_comments = pretreatment(list(data[‘comment’].values))

tokenizer = BertTokenizer.from_pretrained(model_config.bert_path)

result_comments_id = tokenizer(result_comments,

padding=True,

truncation=True,

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
img
img



既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Python开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以添加V获取:vip1024c (备注Python)
img

在这里插入图片描述

感谢每一个认真阅读我文章的人,看着粉丝一路的上涨和关注,礼尚往来总是要有的:

① 2000多本Python电子书(主流和经典的书籍应该都有了)

② Python标准库资料(最全中文版)

③ 项目源码(四五十个有趣且经典的练手项目及源码)

④ Python基础入门、爬虫、web开发、大数据分析方面的视频(适合小白学习)

⑤ Python学习路线图(告别不入流的学习)

一个人可以走的很快,但一群人才能走的更远。如果你从事以下工作或对以下感兴趣,欢迎戳这里加入程序员的圈子,让我们一起学习成长!

AI人工智能、Android移动开发、AIGC大模型、C C#、Go语言、Java、Linux运维、云计算、MySQL、PMP、网络安全、Python爬虫、UE5、UI设计、Unity3D、Web前端开发、产品经理、车载开发、大数据、鸿蒙、计算机网络、嵌入式物联网、软件测试、数据结构与算法、音视频开发、Flutter、IOS开发、PHP开发、.NET、安卓逆向、云计算

一个人可以走的很快,但一群人才能走的更远。如果你从事以下工作或对以下感兴趣,欢迎戳这里加入程序员的圈子,让我们一起学习成长!

AI人工智能、Android移动开发、AIGC大模型、C C#、Go语言、Java、Linux运维、云计算、MySQL、PMP、网络安全、Python爬虫、UE5、UI设计、Unity3D、Web前端开发、产品经理、车载开发、大数据、鸿蒙、计算机网络、嵌入式物联网、软件测试、数据结构与算法、音视频开发、Flutter、IOS开发、PHP开发、.NET、安卓逆向、云计算

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/2023面试高手/article/detail/647797
推荐阅读
相关标签
  

闽ICP备14008679号