赞
踩
#pylint:disable=no-member import cv2 as cv # Read in an image img = cv.imread('../Resources/Photos/park.jpg') cv.imshow('Park', img) # Converting to grayscale gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) cv.imshow('Gray', gray) # Blur blur = cv.GaussianBlur(img, (7,7), cv.BORDER_DEFAULT) cv.imshow('Blur', blur) # Edge Cascade canny = cv.Canny(blur, 125, 175) cv.imshow('Canny Edges', canny) # Dilating the image dilated = cv.dilate(canny, (7,7), iterations=3) cv.imshow('Dilated', dilated) # Eroding eroded = cv.erode(dilated, (7,7), iterations=3) cv.imshow('Eroded', eroded) # Resize resized = cv.resize(img, (500,500), interpolation=cv.INTER_CUBIC) cv.imshow('Resized', resized) # Cropping cropped = img[50:200, 200:400] cv.imshow('Cropped', cropped) cv.waitKey(0)
#pylint:disable=no-member import cv2 as cv import numpy as np img = cv.imread('../Resources/Photos/cats.jpg') cv.imshow('Cats', img) blank = np.zeros(img.shape, dtype='uint8') cv.imshow('Blank', blank) gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) cv.imshow('Gray', gray) blur = cv.GaussianBlur(gray, (5,5), cv.BORDER_DEFAULT) cv.imshow('Blur', blur) canny = cv.Canny(blur, 125, 175) cv.imshow('Canny Edges', canny) # ret, thresh = cv.threshold(gray, 125, 255, cv.THRESH_BINARY) # cv.imshow('Thresh', thresh) contours, hierarchies = cv.findContours(canny, cv.RETR_LIST, cv.CHAIN_APPROX_SIMPLE) print(f'{len(contours)} contour(s) found!') cv.drawContours(blank, contours, -1, (0,0,255), 1) cv.imshow('Contours Drawn', blank) cv.waitKey(0)
#pylint:disable=no-member import cv2 as cv import numpy as np blank = np.zeros((500,500,3), dtype='uint8') cv.imshow('Blank', blank) # 1. Paint the image a certain colour blank[200:300, 300:400] = 0,0,255 cv.imshow('Green', blank) # 2. Draw a Rectangle cv.rectangle(blank, (0,0), (blank.shape[1]//2, blank.shape[0]//2), (0,255,0), thickness=-1) cv.imshow('Rectangle', blank) # 3. Draw A circle cv.circle(blank, (blank.shape[1]//2, blank.shape[0]//2), 40, (0,0,255), thickness=-1) cv.imshow('Circle', blank) # 4. Draw a line cv.line(blank, (100,250), (300,400), (255,255,255), thickness=3) cv.imshow('Line', blank) # 5. Write text cv.putText(blank, 'Hello, my name is Jason!!!', (0,225), cv.FONT_HERSHEY_TRIPLEX, 1.0, (0,255,0), 2) cv.imshow('Text', blank) cv.waitKey(0)
#pylint:disable=no-member import cv2 as cv img = cv.imread('../Resources/Photos/cats.jpg') cv.imshow('Cats', img) cv.waitKey(0) # Reading Videos capture = cv.VideoCapture('../Resources/Videos/dog.mp4') while True: isTrue, frame = capture.read() # if cv.waitKey(20) & 0xFF==ord('d'): # This is the preferred way - if `isTrue` is false (the frame could # not be read, or we're at the end of the video), we immediately # break from the loop. if isTrue: cv.imshow('Video', frame) if cv.waitKey(20) & 0xFF==ord('d'): break else: break capture.release() cv.destroyAllWindows()
#pylint:disable=no-member import cv2 as cv img = cv.imread('../Resources/Photos/cats.jpg') cv.imshow('Cats', img) gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) cv.imshow('Gray', gray) # Simple Thresholding threshold, thresh = cv.threshold(gray, 150, 255, cv.THRESH_BINARY ) cv.imshow('Simple Thresholded', thresh) threshold, thresh_inv = cv.threshold(gray, 150, 255, cv.THRESH_BINARY_INV ) cv.imshow('Simple Thresholded Inverse', thresh_inv) # Adaptive Thresholding adaptive_thresh = cv.adaptiveThreshold(gray, 255, cv.ADAPTIVE_THRESH_GAUSSIAN_C, cv.THRESH_BINARY_INV, 11, 9) cv.imshow('Adaptive Thresholding', adaptive_thresh) cv.waitKey(0)
#pylint:disable=no-member import cv2 as cv import numpy as np img = cv.imread('../Resources/Photos/park.jpg') cv.imshow('Park', img) # Translation def translate(img, x, y): transMat = np.float32([[1,0,x],[0,1,y]]) dimensions = (img.shape[1], img.shape[0]) return cv.warpAffine(img, transMat, dimensions) # -x --> Left # -y --> Up # x --> Right # y --> Down translated = translate(img, -100, 100) cv.imshow('Translated', translated) # Rotation def rotate(img, angle, rotPoint=None): (height,width) = img.shape[:2] if rotPoint is None: rotPoint = (width//2,height//2) rotMat = cv.getRotationMatrix2D(rotPoint, angle, 1.0) dimensions = (width,height) return cv.warpAffine(img, rotMat, dimensions) rotated = rotate(img, -45) cv.imshow('Rotated', rotated) rotated_rotated = rotate(img, -90) cv.imshow('Rotated Rotated', rotated_rotated) # Resizing resized = cv.resize(img, (500,500), interpolation=cv.INTER_CUBIC) cv.imshow('Resized', resized) # Flipping flip = cv.flip(img, -1) cv.imshow('Flip', flip) # Cropping cropped = img[200:400, 300:400] cv.imshow('Cropped', cropped) cv.waitKey(0)
#pylint:disable=no-member import cv2 as cv import numpy as np blank = np.zeros((400,400), dtype='uint8') rectangle = cv.rectangle(blank.copy(), (30,30), (370,370), 255, -1) circle = cv.circle(blank.copy(), (200,200), 200, 255, -1) cv.imshow('Rectangle', rectangle) cv.imshow('Circle', circle) # bitwise AND --> intersecting regions bitwise_and = cv.bitwise_and(rectangle, circle) cv.imshow('Bitwise AND', bitwise_and) # bitwise OR --> non-intersecting and intersecting regions bitwise_or = cv.bitwise_or(rectangle, circle) cv.imshow('Bitwise OR', bitwise_or) # bitwise XOR --> non-intersecting regions bitwise_xor = cv.bitwise_xor(rectangle, circle) cv.imshow('Bitwise XOR', bitwise_xor) # bitwise NOT bitwise_not = cv.bitwise_not(circle) cv.imshow('Circle NOT', bitwise_not) cv.waitKey(0)
#pylint:disable=no-member import cv2 as cv img = cv.imread('../Resources/Photos/cats.jpg') cv.imshow('Cats', img) # Averaging average = cv.blur(img, (3,3)) cv.imshow('Average Blur', average) # Gaussian Blur gauss = cv.GaussianBlur(img, (3,3), 0) cv.imshow('Gaussian Blur', gauss) # Median Blur median = cv.medianBlur(img, 3) cv.imshow('Median Blur', median) # Bilateral bilateral = cv.bilateralFilter(img, 10, 35, 25) cv.imshow('Bilateral', bilateral) cv.waitKey(0)
#pylint:disable=no-member import cv2 as cv import matplotlib.pyplot as plt img = cv.imread('../Resources/Photos/park.jpg') cv.imshow('Park', img) # plt.imshow(img) # plt.show() # BGR to Grayscale gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) cv.imshow('Gray', gray) # BGR to HSV hsv = cv.cvtColor(img, cv.COLOR_BGR2HSV) cv.imshow('HSV', hsv) # BGR to L*a*b lab = cv.cvtColor(img, cv.COLOR_BGR2LAB) cv.imshow('LAB', lab) # BGR to RGB rgb = cv.cvtColor(img, cv.COLOR_BGR2RGB) cv.imshow('RGB', rgb) # HSV to BGR lab_bgr = cv.cvtColor(lab, cv.COLOR_LAB2BGR) cv.imshow('LAB --> BGR', lab_bgr) cv.waitKey(0)
#pylint:disable=no-member import cv2 as cv import numpy as np img = cv.imread('../Resources/Photos/park.jpg') cv.imshow('Park', img) gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) cv.imshow('Gray', gray) # Laplacian lap = cv.Laplacian(gray, cv.CV_64F) lap = np.uint8(np.absolute(lap)) cv.imshow('Laplacian', lap) # Sobel sobelx = cv.Sobel(gray, cv.CV_64F, 1, 0) sobely = cv.Sobel(gray, cv.CV_64F, 0, 1) combined_sobel = cv.bitwise_or(sobelx, sobely) cv.imshow('Sobel X', sobelx) cv.imshow('Sobel Y', sobely) cv.imshow('Combined Sobel', combined_sobel) canny = cv.Canny(gray, 150, 175) cv.imshow('Canny', canny) cv.waitKey(0)
#pylint:disable=no-member import cv2 as cv import matplotlib.pyplot as plt import numpy as np img = cv.imread('../Resources/Photos/cats.jpg') cv.imshow('Cats', img) blank = np.zeros(img.shape[:2], dtype='uint8') # gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) # cv.imshow('Gray', gray) mask = cv.circle(blank, (img.shape[1]//2,img.shape[0]//2), 100, 255, -1) masked = cv.bitwise_and(img,img,mask=mask) cv.imshow('Mask', masked) # GRayscale histogram # gray_hist = cv.calcHist([gray], [0], mask, [256], [0,256] ) # plt.figure() # plt.title('Grayscale Histogram') # plt.xlabel('Bins') # plt.ylabel('# of pixels') # plt.plot(gray_hist) # plt.xlim([0,256]) # plt.show() # Colour Histogram plt.figure() plt.title('Colour Histogram') plt.xlabel('Bins') plt.ylabel('# of pixels') colors = ('b', 'g', 'r') for i,col in enumerate(colors): hist = cv.calcHist([img], [i], mask, [256], [0,256]) plt.plot(hist, color=col) plt.xlim([0,256]) plt.show() cv.waitKey(0)
#pylint:disable=no-member import cv2 as cv import numpy as np img = cv.imread('../Resources/Photos/cats 2.jpg') cv.imshow('Cats', img) blank = np.zeros(img.shape[:2], dtype='uint8') cv.imshow('Blank Image', blank) circle = cv.circle(blank.copy(), (img.shape[1]//2 + 45,img.shape[0]//2), 100, 255, -1) rectangle = cv.rectangle(blank.copy(), (30,30), (370,370), 255, -1) weird_shape = cv.bitwise_and(circle,rectangle) cv.imshow('Weird Shape', weird_shape) masked = cv.bitwise_and(img,img,mask=weird_shape) cv.imshow('Weird Shaped Masked Image', masked) cv.waitKey(0)
#pylint:disable=no-member import cv2 as cv # img = cv.imread('../Resources/Photos/cat.jpg') # cv.imshow('Cat', img) def rescaleFrame(frame, scale=0.75): # Images, Videos and Live Video width = int(frame.shape[1] * scale) height = int(frame.shape[0] * scale) dimensions = (width,height) return cv.resize(frame, dimensions, interpolation=cv.INTER_AREA) def changeRes(width,height): # Live video capture.set(3,width) capture.set(4,height) # Reading Videos capture = cv.VideoCapture('../Resources/Videos/dog.mp4') while True: isTrue, frame = capture.read() frame_resized = rescaleFrame(frame, scale=.2) cv.imshow('Video', frame) cv.imshow('Video Resized', frame_resized) if cv.waitKey(20) & 0xFF==ord('d'): break capture.release() cv.destroyAllWindows()
#pylint:disable=no-member import cv2 as cv import numpy as np img = cv.imread('../Resources/Photos/park.jpg') cv.imshow('Park', img) blank = np.zeros(img.shape[:2], dtype='uint8') b,g,r = cv.split(img) blue = cv.merge([b,blank,blank]) green = cv.merge([blank,g,blank]) red = cv.merge([blank,blank,r]) cv.imshow('Blue', blue) cv.imshow('Green', green) cv.imshow('Red', red) print(img.shape) print(b.shape) print(g.shape) print(r.shape) merged = cv.merge([b,g,r]) cv.imshow('Merged Image', merged) cv.waitKey(0)
就是简单的运行了给出的程序,重要的是要去理解每个程序,能够在以后去运用。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。