赞
踩
opencv就不介绍了,直接上代码
# -*- coding: utf-8 -*- from skimage.metrics import structural_similarity import imutils import cv2 # 加载两张图片并将他们转换为灰度 imageA = cv2.imread(r"home.png") imageB = cv2.imread(r"home1.png") grayA = cv2.cvtColor(imageA, cv2.COLOR_BGR2GRAY) grayB = cv2.cvtColor(imageB, cv2.COLOR_BGR2GRAY) # 计算两个灰度图像之间的结构相似度指数,相似度等于1完美匹配 (score,diff) = structural_similarity(grayA,grayB,full = True) diff = (diff *255).astype("uint8") print("SSIM:{}".format(score)) # 找到不同点的轮廓以致于我们可以在被标识为“不同”的区域周围放置矩形 thresh = cv2.threshold(diff,0,255,cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1] cnts = cv2.findContours(thresh.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) cnts = cnts[1] if imutils.is_cv3() else cnts[0] # 找到一系列区域,在区域周围放置矩形 for c in cnts: (x,y,w,h) = cv2.boundingRect(c) cv2.rectangle(imageA,(x,y),(x+w,y+h),(0,255,0),2) cv2.rectangle(imageB,(x,y),(x+w,y+h),(0,255,0),2) # 用cv2.imshow 展现最终对比之后的图片, cv2.imwrite 保存最终的结果图片 cv2.imshow("Modified", imageB) cv2.imwrite(r"result.png", imageB) cv2.waitKey(0)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。