赞
踩
目录
- from sklearn.datasets import load_iris
- from sklearn.model_selection import train_test_split
- from sklearn.neighbors import KNeighborsClassifier
- from sklearn.preprocessing import StandardScaler
-
- def knn_iris():
- # 用KNN 算法对鸢尾花进行分类
- # 1、获取数据
- iris = load_iris()
- # 2、划分数据集
- x_train,x_test,y_train,y_test = train_test_split(iris.data,iris.target,random_state=6)
- # 3、特征工程 - 标准化
- transfer = StandardScaler()
- x_train = transfer.fit_transform(x_train)
- x_test = transfer.transform(x_test)
- # 4、KNN 算法预估器
- estimator = KNeighborsClassifier(n_neighbors=3)
- estimator.fit(x_train,y_train)
- # 5、模型评估
- # 方法1 :直接比对真实值和预测值
- y_predict = estimator.predict(x_test)
- print("y_predict:\n",y_predict)
- print("直接比对真实值和预测值:\n",y_test == y_predict)
- # 方法2:计算准确率
- score = estimator.score(x_test,y_test)
- print("准确率为:\n",score)
- return None
-
- if __name__ == "__main__":
- # 代码1 :用KNN算法对鸢尾花进行分类
- knn_iris()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。