赞
踩
目录
回归问题:
目标值:连续性的数据
学习率:步长
- from sklearn.datasets import load_boston
- from sklearn.metrics import mean_squared_error
- from sklearn.model_selection import train_test_split
- from sklearn.preprocessing import StandardScaler
- from sklearn.linear_model import LinearRegression, SGDRegressor
-
-
- def linear1():
- # 正规方程的优化方法对波士顿房价进行预测
- # 1、获取数据
- boston = load_boston()
- # 2、划分数据集
- x_train,x_test,y_train,y_test=train_test_split(boston.data,boston.target,random_state=22)
- # 3、标准化
- transfer = StandardScaler()
- x_train=transfer.fit_transform(x_train)
- x_test = transfer.transform(x_test)
- # 4、预估器
- estimator = LinearRegression()
- estimator.fit(x_train,y_train)
- # 5、得出模型
- print("正规方程-权重系数为:\n",estimator.coef_)
- print("正规方程-偏置为:\n",estimator.intercept_)
- # 6、模型评估
- y_predict = estimator.predict(x_test)
- print("正规方程-预测房价:\n",y_predict)
- errror = mean_squared_error(y_test,y_predict)
- print("正规方程-均方差误差:\n",errror)
- return None
-
-
- def linear2():
- # 梯度下降的优化方法对波士顿房价进行预测
- # 1、获取数据
- boston = load_boston()
- # 2、划分数据集
- x_train, x_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=22)
- # 3、标准化
- transfer = StandardScaler()
- x_train = transfer.fit_transform(x_train)
- x_test = transfer.transform(x_test)
- # 4、预估器
- estimator = SGDRegressor()
- estimator.fit(x_train, y_train)
- # 5、得出模型
- print("梯度下降-权重系数为:\n", estimator.coef_)
- print("梯度下降-偏置为:\n", estimator.intercept_)
- # 6、模型评估
- y_predict = estimator.predict(x_test)
- print("梯度下降-预测房价:\n", y_predict)
- errror = mean_squared_error(y_test, y_predict)
- print("梯度下降-均方差误差:\n", errror)
- return None
-
-
- if __name__ == "__main__":
- # 代码1 :正规方程的优化方法对波士顿房价进行预测
- linear1()
- # 代码2:梯度下降的优化方法对波士顿房价进行预测
- linear2()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。