当前位置:   article > 正文

使用ncnn在树莓派部署自己的yolov5lites模型

使用ncnn在树莓派部署自己的yolov5lites模型

使用ncnn在树莓派部署自己的yolov5lites模型



前言

记录一下入门小白的树莓派部署记录,前前后后走过不少坑。

一、windows10上训练自己的yolov5lites模型

1 下载yolov5lites源码

git clone https://github.com/ppogg/YOLOv5-Lite.git
  • 1

2 配置yolov5lites运行环境

默认你在windows10上已经会配置环境,由于我本身已经配置好torch=1.7,torchvision=0.8,对应的cuda版本为11.0,还有对应的cudnn版本以及显卡驱动,我就在此环境下进行训练。并使用requirements.txt里的依赖(不需要重新配置相应的cuda以及cudnn)进行.onnx的导出

pip install -r requirements.txt
  • 1

3 修改参数进行yolov5lites的训练

这一部分是记录转换xml格式为txt文件以及yolov5lites训练自己的模型等所需要的准备工作。

3.1 修改.yaml文件

为自己的训练种类以及个数

在这里插入图片描述

3.2 修改输入为[320,320]

将下载的v5lite-s.pt文件放在创建的weights/文件夹下。
在这里插入图片描述

3.3 进行训练

点击train.py,训练保存的权重在runs文件夹下

在这里插入图片描述

3.4 生成先验框

使用autoanchor.py,将生成的数据保存到v5lites.yaml
自己手动添加到对应的是C:\Users\jxbj2\Desktop\yolov5lite\YOLOv5-Lite-master\models\v5lite-s.yaml
在这里插入图片描述

3.5 可能遇到的bug,比如爆显存等等自己可以csdn一下。(坚持下去,多舔一舔)

3.6 这里贴一个将xml格式转换成yolov5lites训练所需的txt文件

文件夹准备如下,images放入图片,indata放入对应的xml格式文件,生成的txt文件会在labels文件夹下。
在这里插入图片描述
转换代码如下,如需调动测试以及验证数据集自己手动调yolov5lites的代码,换上自己对应修改的种类即可。

import xml.etree.ElementTree as ET
 
import pickle
import os
from os import listdir , getcwd
from os.path import join
import glob
 
classes = ["desk", "projector","cup","laptop","trash","box","mecanum"]
 
def convert(size, box):
 
    dw = 1.0/size[0]
    dh = 1.0/size[1]
    x = (box[0]+box[1])/2.0
    y = (box[2]+box[3])/2.0
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x*dw
    w = w*dw
    y = y*dh
    h = h*dh
    return (x,y,w,h)
 
def convert_annotation(image_name):
    in_file = open('./indata/'+image_name[:-3]+'xml') #xml文件路径
    out_file = open('./labels/'+image_name[:-3]+'txt', 'w') #转换后的txt文件存放路径
    f = open('./indata/'+image_name[:-3]+'xml')
    xml_text = f.read()
    root = ET.fromstring(xml_text)
    f.close()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)
 
 
 
 
    for obj in root.iter('object'):
        cls = obj.find('name').text
        if cls not in classes:
            print(cls)
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
             float(xmlbox.find('ymax').text))
        bb = convert((w,h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
 
wd = getcwd()
 
if __name__ == '__main__':
 
    #for image_path in glob.glob("./images/train/*.jpg"): #每一张图片都对应一个xml文件这里写xml对应的图片的路径
    for image_path in glob.glob("./images/*.jpg"): #每一张图片都对应一个xml文件这里写xml对应的图片的路径
        image_name = image_path.split('\\')[-1]
        convert_annotation(image_name)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58

二、数据的导出以及转换

这部分的导出我是在windows上完成的,我尝试了一下在树莓派上去导出,但一直报导出错误。

1.last.onnx文件导出以及简化

python export.py --weights weights/last.pt
  • 1

在这里插入图片描述
会在weights/文件夹下生成对应的last.onnx文件
在这里插入图片描述
使用onnx-simplifier对转换后的onnx进行简化,将last.onnx文件放到yolov5lite-master文件下输入在终端输入以下指令

python -m onnxsim last.onnx lastsim.onnx
  • 1

在这里插入图片描述

将简化后的lastsim.onnx放入u盘,导入到树莓派中

三、树莓派环境依赖已经ncnn编译

1.树莓派环境依赖配置

sudo apt-get install git cmake
sudo apt-get install -y gfortran
sudo apt-get install -y libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler
sudo apt-get install --no-install-recommends libboost-all-dev
sudo apt-get install -y libgflags-dev libgoogle-glog-dev liblmdb-dev libatlas-base-dev
  • 1
  • 2
  • 3
  • 4
  • 5

2.ncnn配置以及编译

$ git clone https://gitee.com/Tencent/ncnn.git
cd ncnn
mkdir build
cd build
cmake ..
make -j4
make install
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

四、树莓派部署lite的ncnn细节

1.将lastsim.onnx转换为fp16的last.param和last.bin文件

对应路径自己修改(应当具备基础的命令行使用能力哈哈哈哈哈)

cd ncnn/build
./tools/onnx/onnx2ncnn lastsim.onnx lastsim.param lastsim.bin
./tools/ncnnoptimize lastsim.param lastsim.bin last.param last.bin 65536
  • 1
  • 2
  • 3

2.添加yolov5lite.cpp到ncnn/examples文件夹下

具体代码如下所示

// Tencent is pleased to support the open source community by making ncnn available.
//
// Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
 
#include "layer.h"
#include "net.h"
 
#if defined(USE_NCNN_SIMPLEOCV)
#include "simpleocv.h"
#else
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#endif
#include <float.h>
#include <stdio.h>
#include <vector>
#include <sys/time.h>
 
// 0 : FP16
// 1 : INT8
#define USE_INT8 0
 
// 0 : Image
// 1 : Camera
#define USE_CAMERA 1
 
struct Object
{
    cv::Rect_<float> rect;
    int label;
    float prob;
};
 
static inline float intersection_area(const Object& a, const Object& b)
{
    cv::Rect_<float> inter = a.rect & b.rect;
    return inter.area();
}
 
static void qsort_descent_inplace(std::vector<Object>& faceobjects, int left, int right)
{
    int i = left;
    int j = right;
    float p = faceobjects[(left + right) / 2].prob;
 
    while (i <= j)
    {
        while (faceobjects[i].prob > p)
            i++;
 
        while (faceobjects[j].prob < p)
            j--;
 
        if (i <= j)
        {
            // swap
            std::swap(faceobjects[i], faceobjects[j]);
 
            i++;
            j--;
        }
    }
 
    #pragma omp parallel sections
    {
        #pragma omp section
        {
            if (left < j) qsort_descent_inplace(faceobjects, left, j);
        }
        #pragma omp section
        {
            if (i < right) qsort_descent_inplace(faceobjects, i, right);
        }
    }
}
 
static void qsort_descent_inplace(std::vector<Object>& faceobjects)
{
    if (faceobjects.empty())
        return;
 
    qsort_descent_inplace(faceobjects, 0, faceobjects.size() - 1);
}
 
static void nms_sorted_bboxes(const std::vector<Object>& faceobjects, std::vector<int>& picked, float nms_threshold)
{
    picked.clear();
 
    const int n = faceobjects.size();
 
    std::vector<float> areas(n);
    for (int i = 0; i < n; i++)
    {
        areas[i] = faceobjects[i].rect.area();
    }
 
    for (int i = 0; i < n; i++)
    {
        const Object& a = faceobjects[i];
 
        int keep = 1;
        for (int j = 0; j < (int)picked.size(); j++)
        {
            const Object& b = faceobjects[picked[j]];
 
            // intersection over union
            float inter_area = intersection_area(a, b);
            float union_area = areas[i] + areas[picked[j]] - inter_area;
            // float IoU = inter_area / union_area
            if (inter_area / union_area > nms_threshold)
                keep = 0;
        }
 
        if (keep)
            picked.push_back(i);
    }
}
 
static inline float sigmoid(float x)
{
    return static_cast<float>(1.f / (1.f + exp(-x)));
}
 
// unsigmoid
static inline float unsigmoid(float y) {
    return static_cast<float>(-1.0 * (log((1.0 / y) - 1.0)));
}
 
static void generate_proposals(const ncnn::Mat &anchors, int stride, const ncnn::Mat &in_pad,
                               const ncnn::Mat &feat_blob, float prob_threshold,
                               std::vector <Object> &objects) {
    const int num_grid = feat_blob.h;
    float unsig_pro = 0;
    if (prob_threshold > 0.6)
        unsig_pro = unsigmoid(prob_threshold);
 
    int num_grid_x;
    int num_grid_y;
    if (in_pad.w > in_pad.h) {
        num_grid_x = in_pad.w / stride;
        num_grid_y = num_grid / num_grid_x;
    } else {
        num_grid_y = in_pad.h / stride;
        num_grid_x = num_grid / num_grid_y;
    }
 
    const int num_class = feat_blob.w - 5;
 
    const int num_anchors = anchors.w / 2;
 
    for (int q = 0; q < num_anchors; q++) {
        const float anchor_w = anchors[q * 2];
        const float anchor_h = anchors[q * 2 + 1];
 
        const ncnn::Mat feat = feat_blob.channel(q);
 
        for (int i = 0; i < num_grid_y; i++) {
            for (int j = 0; j < num_grid_x; j++) {
                const float *featptr = feat.row(i * num_grid_x + j);
 
                // find class index with max class score
                int class_index = 0;
                float class_score = -FLT_MAX;
                float box_score = featptr[4];
                if (prob_threshold > 0.6) {
                    // while prob_threshold > 0.6, unsigmoid better than sigmoid
                    if (box_score > unsig_pro) {
                        for (int k = 0; k < num_class; k++) {
                            float score = featptr[5 + k];
                            if (score > class_score) {
                                class_index = k;
                                class_score = score;
                            }
                        }
 
                        float confidence = sigmoid(box_score) * sigmoid(class_score);
 
                        if (confidence >= prob_threshold) {
 
                            float dx = sigmoid(featptr[0]);
                            float dy = sigmoid(featptr[1]);
                            float dw = sigmoid(featptr[2]);
                            float dh = sigmoid(featptr[3]);
 
                            float pb_cx = (dx * 2.f - 0.5f + j) * stride;
                            float pb_cy = (dy * 2.f - 0.5f + i) * stride;
 
                            float pb_w = pow(dw * 2.f, 2) * anchor_w;
                            float pb_h = pow(dh * 2.f, 2) * anchor_h;
 
                            float x0 = pb_cx - pb_w * 0.5f;
                            float y0 = pb_cy - pb_h * 0.5f;
                            float x1 = pb_cx + pb_w * 0.5f;
                            float y1 = pb_cy + pb_h * 0.5f;
 
                            Object obj;
                            obj.rect.x = x0;
                            obj.rect.y = y0;
                            obj.rect.width = x1 - x0;
                            obj.rect.height = y1 - y0;
                            obj.label = class_index;
                            obj.prob = confidence;
 
                            objects.push_back(obj);
                        }
                    } else {
                        for (int k = 0; k < num_class; k++) {
                            float score = featptr[5 + k];
                            if (score > class_score) {
                                class_index = k;
                                class_score = score;
                            }
                        }
                        float confidence = sigmoid(box_score) * sigmoid(class_score);
 
                        if (confidence >= prob_threshold) {
                            float dx = sigmoid(featptr[0]);
                            float dy = sigmoid(featptr[1]);
                            float dw = sigmoid(featptr[2]);
                            float dh = sigmoid(featptr[3]);
 
                            float pb_cx = (dx * 2.f - 0.5f + j) * stride;
                            float pb_cy = (dy * 2.f - 0.5f + i) * stride;
 
                            float pb_w = pow(dw * 2.f, 2) * anchor_w;
                            float pb_h = pow(dh * 2.f, 2) * anchor_h;
 
                            float x0 = pb_cx - pb_w * 0.5f;
                            float y0 = pb_cy - pb_h * 0.5f;
                            float x1 = pb_cx + pb_w * 0.5f;
                            float y1 = pb_cy + pb_h * 0.5f;
 
                            Object obj;
                            obj.rect.x = x0;
                            obj.rect.y = y0;
                            obj.rect.width = x1 - x0;
                            obj.rect.height = y1 - y0;
                            obj.label = class_index;
                            obj.prob = confidence;
 
                            objects.push_back(obj);
                        }
                    }
                }
            }
        }
    }
}
 
static int detect_yolov5(const cv::Mat& bgr, std::vector<Object>& objects)
{
    ncnn::Net yolov5;
 
#if USE_INT8
    yolov5.opt.use_int8_inference=true;
#else
    yolov5.opt.use_vulkan_compute = true;
    yolov5.opt.use_bf16_storage = true;
#endif
 
    // original pretrained model from https://github.com/ultralytics/yolov5
    // the ncnn model https://github.com/nihui/ncnn-assets/tree/master/models
 
#if USE_INT8
    yolov5.load_param("/home/corvin/Mask/weights/e.param");
    yolov5.load_model("/home/corvin/Mask/weights/e.bin");
#else
    yolov5.load_param("/home/corvin/Mask/weights/eopt.param");
    yolov5.load_model("/home/corvin/Mask/weights/eopt.bin");
#endif
 
    const int target_size = 320;
    const float prob_threshold = 0.60f;
    const float nms_threshold = 0.60f;
 
    int img_w = bgr.cols;
    int img_h = bgr.rows;
 
    // letterbox pad to multiple of 32
    int w = img_w;
    int h = img_h;
    float scale = 1.f;
    if (w > h)
    {
        scale = (float)target_size / w;
        w = target_size;
        h = h * scale;
    }
    else
    {
        scale = (float)target_size / h;
        h = target_size;
        w = w * scale;
    }
 
    ncnn::Mat in = ncnn::Mat::from_pixels_resize(bgr.data, ncnn::Mat::PIXEL_BGR2RGB, img_w, img_h, w, h);
 
    // pad to target_size rectangle
    // yolov5/utils/datasets.py letterbox
    int wpad = (w + 31) / 32 * 32 - w;
    int hpad = (h + 31) / 32 * 32 - h;
    ncnn::Mat in_pad;
    ncnn::copy_make_border(in, in_pad, hpad / 2, hpad - hpad / 2, wpad / 2, wpad - wpad / 2, ncnn::BORDER_CONSTANT, 114.f);
 
    const float norm_vals[3] = {1 / 255.f, 1 / 255.f, 1 / 255.f};
    in_pad.substract_mean_normalize(0, norm_vals);
 
    ncnn::Extractor ex = yolov5.create_extractor();
 
    ex.input("images", in_pad);
 
    std::vector<Object> proposals;
 
    // stride 8
    {
        ncnn::Mat out;
        ex.extract("451", out);
 
        ncnn::Mat anchors(6);
        anchors[0] = 10.f;
        anchors[1] = 13.f;
        anchors[2] = 16.f;
        anchors[3] = 30.f;
        anchors[4] = 33.f;
        anchors[5] = 23.f;
 
        std::vector<Object> objects8;
        generate_proposals(anchors, 8, in_pad, out, prob_threshold, objects8);
 
        proposals.insert(proposals.end(), objects8.begin(), objects8.end());
    }
    // stride 16
    {
        ncnn::Mat out;
        ex.extract("479", out);
 
 
        ncnn::Mat anchors(6);
        anchors[0] = 30.f;
        anchors[1] = 61.f;
        anchors[2] = 62.f;
        anchors[3] = 45.f;
        anchors[4] = 59.f;
        anchors[5] = 119.f;
 
        std::vector<Object> objects16;
        generate_proposals(anchors, 16, in_pad, out, prob_threshold, objects16);
 
        proposals.insert(proposals.end(), objects16.begin(), objects16.end());
    }
    // stride 32
    {
        ncnn::Mat out;
        ex.extract("507", out);
 
 
        ncnn::Mat anchors(6);
        anchors[0] = 116.f;
        anchors[1] = 90.f;
        anchors[2] = 156.f;
        anchors[3] = 198.f;
        anchors[4] = 373.f;
        anchors[5] = 326.f;
 
        std::vector<Object> objects32;
        generate_proposals(anchors, 32, in_pad, out, prob_threshold, objects32);
 
        proposals.insert(proposals.end(), objects32.begin(), objects32.end());
    }
 
    // sort all proposals by score from highest to lowest
    qsort_descent_inplace(proposals);
 
    // apply nms with nms_threshold
    std::vector<int> picked;
    nms_sorted_bboxes(proposals, picked, nms_threshold);
 
    int count = picked.size();
 
    objects.resize(count);
    for (int i = 0; i < count; i++)
    {
        objects[i] = proposals[picked[i]];
 
        // adjust offset to original unpadded
        float x0 = (objects[i].rect.x - (wpad / 2)) / scale;
        float y0 = (objects[i].rect.y - (hpad / 2)) / scale;
        float x1 = (objects[i].rect.x + objects[i].rect.width - (wpad / 2)) / scale;
        float y1 = (objects[i].rect.y + objects[i].rect.height - (hpad / 2)) / scale;
 
        // clip
        x0 = std::max(std::min(x0, (float)(img_w - 1)), 0.f);
        y0 = std::max(std::min(y0, (float)(img_h - 1)), 0.f);
        x1 = std::max(std::min(x1, (float)(img_w - 1)), 0.f);
        y1 = std::max(std::min(y1, (float)(img_h - 1)), 0.f);
 
        objects[i].rect.x = x0;
        objects[i].rect.y = y0;
        objects[i].rect.width = x1 - x0;
        objects[i].rect.height = y1 - y0;
    }
 
    return 0;
}
 
static void draw_objects(const cv::Mat& bgr, const std::vector<Object>& objects)
{
	    static const char* class_names[] = {
	        "face","face_mask"
    };
 
    cv::Mat image = bgr.clone();
 
    for (size_t i = 0; i < objects.size(); i++)
    {
        const Object& obj = objects[i];
 
        fprintf(stderr, "%d = %.5f at %.2f %.2f %.2f x %.2f\n", obj.label, obj.prob,
                obj.rect.x, obj.rect.y, obj.rect.width, obj.rect.height);
 
        cv::rectangle(image, obj.rect, cv::Scalar(0, 255, 0));
 
        char text[256];
        sprintf(text, "%s %.1f%%", class_names[obj.label], obj.prob * 100);
 
        int baseLine = 0;
        cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
 
        int x = obj.rect.x;
        int y = obj.rect.y - label_size.height - baseLine;
        if (y < 0)
            y = 0;
        if (x + label_size.width > image.cols)
            x = image.cols - label_size.width;
 
        cv::rectangle(image, cv::Rect(cv::Point(x, y), cv::Size(label_size.width, label_size.height + baseLine)),
                      cv::Scalar(255, 255, 255), -1);
 
        cv::putText(image, text, cv::Point(x, y + label_size.height),
                    cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0));
    }
#if USE_CAMERA
    imshow("camera", image);
    cv::waitKey(1);
#else
    cv::imwrite("result.jpg", image);
#endif
}
 
#if USE_CAMERA
int main(int argc, char** argv)
{
    cv::VideoCapture capture;
    capture.open(0);  //修改这个参数可以选择打开想要用的摄像头
 
    cv::Mat frame;
    while (true)
    {
        capture >> frame;
        cv::Mat m = frame;
 
        std::vector<Object> objects;
        detect_yolov5(frame, objects);
 
        draw_objects(m, objects);
        if (cv::waitKey(30) >= 0)
            break;
    }
}
#else
int main(int argc, char** argv)
{
    if (argc != 2)
    {
        fprintf(stderr, "Usage: %s [imagepath]\n", argv[0]);
        return -1;
    }
 
    const char* imagepath = argv[1];
 
    struct timespec begin, end;
    long time;
    clock_gettime(CLOCK_MONOTONIC, &begin);
 
    cv::Mat m = cv::imread(imagepath, 1);
    if (m.empty())
    {
        fprintf(stderr, "cv::imread %s failed\n", imagepath);
        return -1;
    }
 
    std::vector<Object> objects;
    detect_yolov5(m, objects);
 
    clock_gettime(CLOCK_MONOTONIC, &end);
    time = (end.tv_sec - begin.tv_sec) + (end.tv_nsec - begin.tv_nsec);
    printf(">> Time : %lf ms\n", (double)time/1000000);
 
    draw_objects(m, objects);
 
    return 0;
}
#endif
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
  • 273
  • 274
  • 275
  • 276
  • 277
  • 278
  • 279
  • 280
  • 281
  • 282
  • 283
  • 284
  • 285
  • 286
  • 287
  • 288
  • 289
  • 290
  • 291
  • 292
  • 293
  • 294
  • 295
  • 296
  • 297
  • 298
  • 299
  • 300
  • 301
  • 302
  • 303
  • 304
  • 305
  • 306
  • 307
  • 308
  • 309
  • 310
  • 311
  • 312
  • 313
  • 314
  • 315
  • 316
  • 317
  • 318
  • 319
  • 320
  • 321
  • 322
  • 323
  • 324
  • 325
  • 326
  • 327
  • 328
  • 329
  • 330
  • 331
  • 332
  • 333
  • 334
  • 335
  • 336
  • 337
  • 338
  • 339
  • 340
  • 341
  • 342
  • 343
  • 344
  • 345
  • 346
  • 347
  • 348
  • 349
  • 350
  • 351
  • 352
  • 353
  • 354
  • 355
  • 356
  • 357
  • 358
  • 359
  • 360
  • 361
  • 362
  • 363
  • 364
  • 365
  • 366
  • 367
  • 368
  • 369
  • 370
  • 371
  • 372
  • 373
  • 374
  • 375
  • 376
  • 377
  • 378
  • 379
  • 380
  • 381
  • 382
  • 383
  • 384
  • 385
  • 386
  • 387
  • 388
  • 389
  • 390
  • 391
  • 392
  • 393
  • 394
  • 395
  • 396
  • 397
  • 398
  • 399
  • 400
  • 401
  • 402
  • 403
  • 404
  • 405
  • 406
  • 407
  • 408
  • 409
  • 410
  • 411
  • 412
  • 413
  • 414
  • 415
  • 416
  • 417
  • 418
  • 419
  • 420
  • 421
  • 422
  • 423
  • 424
  • 425
  • 426
  • 427
  • 428
  • 429
  • 430
  • 431
  • 432
  • 433
  • 434
  • 435
  • 436
  • 437
  • 438
  • 439
  • 440
  • 441
  • 442
  • 443
  • 444
  • 445
  • 446
  • 447
  • 448
  • 449
  • 450
  • 451
  • 452
  • 453
  • 454
  • 455
  • 456
  • 457
  • 458
  • 459
  • 460
  • 461
  • 462
  • 463
  • 464
  • 465
  • 466
  • 467
  • 468
  • 469
  • 470
  • 471
  • 472
  • 473
  • 474
  • 475
  • 476
  • 477
  • 478
  • 479
  • 480
  • 481
  • 482
  • 483
  • 484
  • 485
  • 486
  • 487
  • 488
  • 489
  • 490
  • 491
  • 492
  • 493
  • 494
  • 495
  • 496
  • 497
  • 498
  • 499
  • 500
  • 501
  • 502
  • 503
  • 504
  • 505
  • 506
  • 507
  • 508
  • 509
  • 510
  • 511
  • 512
  • 513
  • 514

3.修改yolov5lite.cpp

3.1 修改classclass_names

修改成你所需要的检测种类,“desk”, “bicycle”, “cup”, “laptop”, “trash”, “box”, “mecanum”
在这里插入图片描述

3.2 修改anchor的数据

对应的是C:\Users\jxbj2\Desktop\yolov5lite\YOLOv5-Lite-master\models\v5lite-s.yaml
在这里插入图片描述
将上面这些anchor的数据(15,28,19,35,23,46)放入yolov5lite.cpp中的以下代码中,第一行的六个数据对应10,13,16,30,33,23)
对应的还有两个对应的地方也做出同样修改即可。
在这里插入图片描述

3.3 修改lastsim.param

将Reshape 0=x全部设置为0=-1,如画圈所示
在这里插入图片描述

3.4 修改yolov5lites的ex.extract

打开lastsim.param文件,对应上图三个方框里的 onnx::Sigmoid_647改写到ex.extract里面。
在这里插入图片描述

3.5 在yolov5lites.cpp内修改路径

修改好yolov5.cpp中lastsim.param和lastsim.bin的路径,并放到测试的文件夹内(路径)。

3.6 修改CMakelists.txt

进入到ncnn/examples/CMakelist.txt,如下图所示
在这里插入图片描述
输入指令

cd ncnn/build
cmake ..
make
  • 1
  • 2
  • 3

完成编译。

五、测试效果

打开测试的文件夹,将编译好的yolov5.cpp可执行文件放到测试文件夹下,(在yolov5lite.cpp文件内选择摄像头还是图片,如果有图片记得放在测试文件夹下)。

cd pi/ceshi
./yolov5_lite.cpp
  • 1
  • 2

说实话,我用的树莓派4B,yolov5lites感觉效果都不是很好,接下来我要继续试一下int8的量化。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/2023面试高手/article/detail/140383
推荐阅读
相关标签
  

闽ICP备14008679号