当前位置:   article > 正文

LeetCode之单词接龙_单词接龙 leetcode

单词接龙 leetcode

题目:
给定两个单词(beginWord 和 endWord)和一个字典,找到从 beginWord 到 endWord 的最短转换序列的长度。转换需遵循如下规则:

  1. 每次转换只能改变一个字母。
  2. 转换过程中的中间单词必须是字典中的单词。
    说明:
  • 如果不存在这样的转换序列,返回 0。
  • 所有单词具有相同的长度。
  • 所有单词只由小写字母组成。
  • 字典中不存在重复的单词。
  • 你可以假设 beginWord 和 endWord 是非空的,且二者不相同
    示例:
    在这里插入图片描述

方法一:标准广度遍历
在这里插入图片描述

class Solution{
	public int ladderLength(String beginWord, String endWord, List<String> wordList) {
		if(!wordList.contains(endWord))return 0;
		int count=1;
		Set<String> wordSet=new HashSet<String>();
		wordSet.addAll(wordList);
		wordSet.remove(beginWord);
		ArrayDeque<String> queue=new ArrayDeque<>();//双向队列
		queue.addLast(beginWord);
		Set<String> visited=new HashSet<>();
		visited.add(beginWord);
		while(!queue.isEmpty()) {
			int size=queue.size();
			for(int i=0;i<size;i++) {
				String tmp=queue.removeFirst();
				char[] chars=tmp.toCharArray();
				for(int j=0;j<chars.length;j++) {
					char ch=chars[j];
					for(char c='a';c<='z';c++) {
						if(c==ch)continue;
						chars[j]=c;
						String str=toStr(chars);
						if(str.equals(endWord)) {
							visited.add(str);
							return count+1;
						}
						if(!visited.contains(str)&&wordSet.contains(str)) {
							queue.addLast(str);
							visited.add(str);
						}
					}
					chars[j]=ch;
				}
			}
			count++;
		}
		return visited.contains(endWord)?count:0;
	}
	private String toStr(char[] chars) {
		StringBuffer sb=new StringBuffer();
		for(char ch:chars) {
			sb.append(ch);
		}
		return sb.toString();
	}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46

方法二:广度优先搜索+优化建图
思路

本题要求的是最短转换序列的长度,看到最短首先想到的就是广度优先搜索。想到广度优先搜索自然而然的就能想到图,但是本题并没有直截了当的给出图的模型,因此我们需要把它抽象成图的模型。
我们可以把每个单词都抽象为一个点,如果两个单词可以只改变一个字母进行转换,那么说明他们之间有一条双向边。因此我们只需要把满足转换条件的点相连,就形成了一张图。
基于该图,我们以 beginWord 为图的起点,以 endWord 为终点进行广度优先搜索,寻找 beginWord 到 endWord 的最短路径。
在这里插入图片描述

算法
基于上面的思路我们考虑如何编程实现。
首先为了方便表示,我们先给每一个单词标号,即给每个单词分配一个 id。创建一个由单词 word 到 id 对应的映射 wordId,并将 beginWord 与 wordList 中所有的单词都加入这个映射中。之后我们检查 endWord 是否在该映射内,若不存在,则输入无解。我们可以使用哈希表实现上面的映射关系。
然后我们需要建图,依据朴素的思路,我们可以枚举每一对单词的组合,判断它们是否恰好相差一个字符,以判断这两个单词对应的节点是否能够相连。但是这样效率太低,我们可以优化建图。
具体地,我们可以创建虚拟节点。对于单词 hit,我们创建三个虚拟节点 *it、h*t、hi*,并让 hit 向这三个虚拟节点分别连一条边即可。如果一个单词能够转化为 hit,那么该单词必然会连接到这三个虚拟节点之一。对于每一个单词,我们枚举它连接到的虚拟节点,把该单词对应的 id 与这些虚拟节点对应的 id 相连即可。
最后我们将起点加入队列开始广度优先搜索,当搜索到终点时,我们就找到了最短路径的长度。注意因为添加了虚拟节点,所以我们得到的距离为实际最短路径长度的两倍。同时我们并未计算起点对答案的贡献,所以我们应当返回距离的一半再加一的结果。

class Solution {
    Map<String, Integer> wordId = new HashMap<String, Integer>();
    List<List<Integer>> edge = new ArrayList<List<Integer>>();
    int nodeNum = 0;

    public int ladderLength(String beginWord, String endWord, List<String> wordList) {
        for (String word : wordList) {
            addEdge(word);
        }
        addEdge(beginWord);
        if (!wordId.containsKey(endWord)) {
            return 0;
        }
        int[] dis = new int[nodeNum];
        Arrays.fill(dis, Integer.MAX_VALUE);
        int beginId = wordId.get(beginWord), endId = wordId.get(endWord);
        dis[beginId] = 0;

        Queue<Integer> que = new LinkedList<Integer>();
        que.offer(beginId);
        while (!que.isEmpty()) {
            int x = que.poll();
            if (x == endId) {
                return dis[endId] / 2 + 1;
            }
            for (int it : edge.get(x)) {
                if (dis[it] == Integer.MAX_VALUE) {
                    dis[it] = dis[x] + 1;
                    que.offer(it);
                }
            }
        }
        return 0;
    }

    public void addEdge(String word) {
        addWord(word);
        int id1 = wordId.get(word);
        char[] array = word.toCharArray();
        int length = array.length;
        for (int i = 0; i < length; ++i) {
            char tmp = array[i];
            array[i] = '*';
            String newWord = new String(array);
            addWord(newWord);
            int id2 = wordId.get(newWord);
            edge.get(id1).add(id2);
            edge.get(id2).add(id1);
            array[i] = tmp;
        }
    }

    public void addWord(String word) {
        if (!wordId.containsKey(word)) {
            wordId.put(word, nodeNum++);
            edge.add(new ArrayList<Integer>());
        }
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59

方法三:双向广度优先搜索
思路及解法
根据给定字典构造的图可能会很大,而广度优先搜索的搜索空间大小依赖于每层节点的分支数量。假如每个节点的分支数量相同,搜索空间会随着层数的增长指数级的增加。考虑一个简单的二叉树,每一层都是满二叉树的扩展,节点的数量会以 2 为底数呈指数增长。
如果使用两个同时进行的广搜可以有效地减少搜索空间。一边从 beginWord 开始,另一边从 endWord 开始。我们每次从两边各扩展一层节点,当发现某一时刻两边都访问过同一顶点时就停止搜索。这就是双向广度优先搜索,它可以可观地减少搜索空间大小,从而提高代码运行效率。
在这里插入图片描述

class Solution {
    Map<String, Integer> wordId = new HashMap<String, Integer>();
    List<List<Integer>> edge = new ArrayList<List<Integer>>();
    int nodeNum = 0;

    public int ladderLength(String beginWord, String endWord, List<String> wordList) {
        for (String word : wordList) {
            addEdge(word);
        }
        addEdge(beginWord);
        if (!wordId.containsKey(endWord)) {
            return 0;
        }

        int[] disBegin = new int[nodeNum];
        Arrays.fill(disBegin, Integer.MAX_VALUE);
        int beginId = wordId.get(beginWord);
        disBegin[beginId] = 0;
        Queue<Integer> queBegin = new LinkedList<Integer>();
        queBegin.offer(beginId);
        
        int[] disEnd = new int[nodeNum];
        Arrays.fill(disEnd, Integer.MAX_VALUE);
        int endId = wordId.get(endWord);
        disEnd[endId] = 0;
        Queue<Integer> queEnd = new LinkedList<Integer>();
        queEnd.offer(endId);

        while (!queBegin.isEmpty() && !queEnd.isEmpty()) {
            int queBeginSize = queBegin.size();
            for (int i = 0; i < queBeginSize; ++i) {
                int nodeBegin = queBegin.poll();
                if (disEnd[nodeBegin] != Integer.MAX_VALUE) {
                    return (disBegin[nodeBegin] + disEnd[nodeBegin]) / 2 + 1;
                }
                for (int it : edge.get(nodeBegin)) {
                    if (disBegin[it] == Integer.MAX_VALUE) {
                        disBegin[it] = disBegin[nodeBegin] + 1;
                        queBegin.offer(it);
                    }
                }
            }

            int queEndSize = queEnd.size();
            for (int i = 0; i < queEndSize; ++i) {
                int nodeEnd = queEnd.poll();
                if (disBegin[nodeEnd] != Integer.MAX_VALUE) {
                    return (disBegin[nodeEnd] + disEnd[nodeEnd]) / 2 + 1;
                }
                for (int it : edge.get(nodeEnd)) {
                    if (disEnd[it] == Integer.MAX_VALUE) {
                        disEnd[it] = disEnd[nodeEnd] + 1;
                        queEnd.offer(it);
                    }
                }
            }
        }
        return 0;
    }

    public void addEdge(String word) {
        addWord(word);
        int id1 = wordId.get(word);
        char[] array = word.toCharArray();
        int length = array.length;
        for (int i = 0; i < length; ++i) {
            char tmp = array[i];
            array[i] = '*';
            String newWord = new String(array);
            addWord(newWord);
            int id2 = wordId.get(newWord);
            edge.get(id1).add(id2);
            edge.get(id2).add(id1);
            array[i] = tmp;
        }
    }

    public void addWord(String word) {
        if (!wordId.containsKey(word)) {
            wordId.put(word, nodeNum++);
            edge.add(new ArrayList<Integer>());
        }
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/2023面试高手/article/detail/144310
推荐阅读
相关标签
  

闽ICP备14008679号