赞
踩
目录
视频已上传b站
YOLOv5、YOLOv8检测-烟雾检测报警系统_哔哩哔哩_bilibili
本文为系列专栏,包括各种YOLO检测算法项目、追踪算法项目、双目视觉、深度结构光相机测距测速三维测量项目等
专栏持续更新中,有需要的小伙伴可私聊,接项目定制。
随着科技的不断发展,人工智能技术在各个领域得到广泛应用。其中,计算机视觉是人工智能领域中的一个重要分支,它主要研究如何使机器“看”和“理解”图像或视频。在计算机视觉领域,目标检测是一个关键问题,它涉及识别图像或视频中的特定对象,并确定它们的位置。烟雾检测作为目标检测的一个重要应用领域,对于及时发现火灾、减少人员伤亡和财产损失具有重要意义。
火灾安全:烟雾是火灾初期最常见且最早的指示物之一。快速准确地检测和报警可以帮助尽早采取适当的措施,以防止火灾蔓延和减少损失。通过基于YOLOv5的烟雾报警系统,可以实现实时、高效的烟雾检测,提供及时的火灾预警。
人员安全:烟雾中的有害气体和毒素可能对人体健康产生严重威胁。火灾发生时,人们通常可能会处于迷惘或恐慌状态,很难准确判断烟雾的存在和危害程度。一个可靠的烟雾报警系统可以提供及早的警示,帮助人们采取必要的行动,增加人员的逃生机会。
资产保护:火灾造成的财产损失往往巨大。通过及时发现和报警,可以提高火灾发生时应对的效率,减少财产损失。基于YOLOv5的烟雾报警系统可以实现对大范围区域进行监控和烟雾检测,可以在火灾发生前尽早发出警报,有助于及时采取措施保护财产。
自动化和智能化:基于YOLOv5的烟雾报警系统能够利用计算机视觉技术自动实现烟雾检测,无需人工干预,并能够实现高精度的目标检测。这种系统的自动化和智能化特性可以降低人力成本,提高检测效率和准确性。
总之,基于YOLOv5的烟雾报警系统对于火灾安全、人员安全、资产保护以及自动化智能化等方面都具有重要的背景意义,可以提高火灾预警和处理的效率,减少火灾带来的损失。
本项目旨在基于YOLOv5和YOLOv8这两个先进的目标检测模型,开展火灾检测的研究和应用。YOLO(You Only Look Once)是一种实时目标检测算法,它将目标检测任务转化为一个回归问题,通过单次前向传递神经网络即可得到图像中所有目标的类别和位置。YOLOv5是YOLO系列中的最新版本,它在精度和速度之间取得了很好的平衡,被广泛应用于各种实时目标检测任务。
在本项目中,我们将探讨火灾检测领域的挑战和需求,介绍YOLOv5和YOLOv8的基本原理和算法结构,以及在实际火灾检测场景中的应用。通过本项目的研究,我们希望能够为提高火灾检测的准确性和效率,保障人们的生命财产安全,做出积极贡献。
希望本项目能够为火灾检测领域的研究和实际应用提供有益的参考和启示,推动人工智能技术在火灾安全领域的进一步发展和应用。
YOLO(You Only Look Once)是一种高效的实时目标检测算法,它将目标检测任务转化为一个回归问题,通过单次前向传递神经网络即可得到图像中所有目标的类别和位置。相较于传统的目标检测方法,YOLO具有更快的速度和较高的准确性,使其成为计算机视觉领域中的重要算法之一。
YOLO算法的基本思想是将输入图像划分为一个固定大小的网格(grid),每个网格负责预测图像中是否包含目标以及目标的位置和类别。与传统的滑动窗口方法不同,YOLO将目标检测任务转化为一个回归问题,同时预测所有目标的位置和类别,避免了重复计算,因此速度更快。
以下是YOLO算法的主要特点和步骤:
划分网格: 将输入图像划分为SxS个网格,每个网格负责预测该网格内是否包含目标。
预测框和类别: 每个网格预测B个边界框(bounding boxes)以及每个边界框的置信度(confidence)和类别概率。置信度表示边界框的准确性,类别概率表示目标属于不同类别的概率。
计算损失函数: YOLO使用多任务损失函数,包括边界框坐标的回归损失、置信度的损失(包括目标是否存在的损失和目标位置的精度损失)、类别概率的损失。通过最小化这些损失,网络可以学习到准确的目标位置和类别信息。
非极大值抑制(NMS): 在预测结果中,可能存在多个边界框对同一个目标的重复检测。为了去除这些重叠的边界框,使用NMS算法来选择具有最高置信度的边界框,并消除与其IoU(交并比)高于阈值的其他边界框。
输出结果: 最终,YOLO输出图像中所有目标的位置和类别信息,以及它们的置信度分数。
YOLO的优势在于它的速度和准确性,它能够实时处理高分辨率的图像,并且在不同尺度和大小的目标上具有很好的泛化能力。这使得YOLO广泛应用于实时目标检测、视频分析、自动驾驶等领域。
部分代码展示
- from PyQt5.QtWidgets import QApplication, QMainWindow, QFileDialog, QMenu, QAction
- from main_win.win import Ui_mainWindow
- from PyQt5.QtCore import Qt, QPoint, QTimer, QThread, pyqtSignal
- from PyQt5.QtGui import QImage, QPixmap, QPainter, QIcon
-
- import sys
- import os
- import json
- import numpy as np
- import torch
- import torch.backends.cudnn as cudnn
- import os
- import time
- import cv2
-
- from models.experimental import attempt_load
- from utils.datasets import LoadImages, LoadWebcam
- from utils.CustomMessageBox import MessageBox
- # LoadWebcam 的最后一个返回值改为 self.cap
- from utils.general import check_img_size, check_requirements, check_imshow, colorstr, non_max_suppression, \
- apply_classifier, scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path, save_one_box
- from utils.plots import colors, plot_one_box, plot_one_box_PIL
- from utils.torch_utils import select_device, load_classifier, time_sync
- from utils.capnums import Camera
- from dialog.rtsp_win import Window
-
-
- class DetThread(QThread):
- send_img = pyqtSignal(np.ndarray)
- send_raw = pyqtSignal(np.ndarray)
- send_statistic = pyqtSignal(dict)
- # 发送信号:正在检测/暂停/停止/检测结束/错误报告
- send_msg = pyqtSignal(str)
- send_percent = pyqtSignal(int)
- send_fps = pyqtSignal(str)
-
- def __init__(self):
- super(DetThread, self).__init__()
- self.weights = './yolov5s.pt' # 设置权重
- self.current_weight = './yolov5s.pt' # 当前权重
- self.source = '0' # 视频源
- self.conf_thres = 0.25 # 置信度
- self.iou_thres = 0.45 # iou
- self.jump_out = False # 跳出循环
- self.is_continue = True # 继续/暂停
- self.percent_length = 1000 # 进度条
- self.rate_check = True # 是否启用延时
- self.rate = 100 # 延时HZ
- self.save_fold = './result' # 保存文件夹
-
- @torch.no_grad()
- def run(self,
- imgsz=640, # inference size (pixels)
- max_det=1000, # maximum detections per image
- device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
- view_img=True, # show results
- save_txt=False, # save results to *.txt
- save_conf=False, # save confidences in --save-txt labels
- save_crop=False, # save cropped prediction boxes
- nosave=False, # do not save images/videos
- classes=None, # filter by class: --class 0, or --class 0 2 3
- agnostic_nms=False, # class-agnostic NMS
- augment=False, # augmented inference
- visualize=False, # visualize features
- update=False, # update all models
- project='runs/detect', # save results to project/name
- name='exp', # save results to project/name
- exist_ok=False, # existing project/name ok, do not increment
- line_thickness=3, # bounding box thickness (pixels)
- hide_labels=False, # hide labels
- hide_conf=False, # hide confidences
- half=False, # use FP16 half-precision inference
- ):
-
- # Initialize
- try:
- device = select_device(device)
- half &= device.type != 'cpu' # half precision only supported on CUDA
-
- # Load model
- model = attempt_load(self.weights, map_location=device) # load FP32 model
- num_params = 0
- for param in model.parameters():
- num_params += param.numel()
- stride = int(model.stride.max()) # model stride
- imgsz = check_img_size(imgsz, s=stride) # check image size
- names = model.module.names if hasattr(model, 'module') else model.names # get class names
- if half:
- model.half() # to FP16
-
- # Dataloader
- if self.source.isnumeric() or self.source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://')):
- view_img = check_imshow()
- cudnn.benchmark = True # set True to speed up constant image size inference
- dataset = LoadWebcam(self.source, img_size=imgsz, stride=stride)
- # bs = len(dataset) # batch_size
- else:
- dataset = LoadImages(self.source, img_size=imgsz, stride=stride)
-
- # Run inference
- if device.type != 'cpu':
- model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
- count = 0
- # 跳帧检测
- jump_count = 0
- start_time = time.time()
- dataset = iter(dataset)
-
- while True:
- # 手动停止
- if self.jump_out:
- self.vid_cap.release()
- self.send_percent.emit(0)
- self.send_msg.emit('停止')
- if hasattr(self, 'out'):
- self.out.release()
- break
- # 临时更换模型
- if self.current_weight != self.weights:
- # Load model
- model = attempt_load(self.weights, map_location=device) # load FP32 model
- num_params = 0
- for param in model.parameters():
- num_params += param.numel()
- stride = int(model.stride.max()) # model stride
- imgsz = check_img_size(imgsz, s=stride) # check image size
- names = model.module.names if hasattr(model, 'module') else model.names # get class names
- if half:
- model.half() # to FP16
- # Run inference
- if device.type != 'cpu':
- model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
- self.current_weight = self.weights
- # 暂停开关
- if self.is_continue:
- path, img, im0s, self.vid_cap = next(dataset)
- # jump_count += 1
- # if jump_count % 5 != 0:
- # continue
- count += 1
- # 每三十帧刷新一次输出帧率
- if count % 30 == 0 and count >= 30:
- fps = int(30/(time.time()-start_time))
- self.send_fps.emit('fps:'+str(fps))
- start_time = time.time()
- if self.vid_cap:
- percent = int(count/self.vid_cap.get(cv2.CAP_PROP_FRAME_COUNT)*self.percent_length)
- self.send_percent.emit(percent)
- else:
- percent = self.percent_length
-
- statistic_dic = {name: 0 for name in names}
- img = torch.from_numpy(img).to(device)
- img = img.half() if half else img.float() # uint8 to fp16/32
- img /= 255.0 # 0 - 255 to 0.0 - 1.0
- if img.ndimension() == 3:
- img = img.unsqueeze(0)
-
- pred = model(img, augment=augment)[0]
-
- # Apply NMS
- pred = non_max_suppression(pred, self.conf_thres, self.iou_thres, classes, agnostic_nms, max_det=max_det)
- # Process detections
- for i, det in enumerate(pred): # detections per image
- im0 = im0s.copy()
-
- if len(det):
- # Rescale boxes from img_size to im0 size
- det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
-
- # Write results
- for *xyxy, conf, cls in reversed(det):
- c = int(cls) # integer class
- statistic_dic[names[c]] += 1
- label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
- # im0 = plot_one_box_PIL(xyxy, im0, label=label, color=colors(c, True), line_thickness=line_thickness) # 中文标签画框,但是耗时会增加
- plot_one_box(xyxy, im0, label=label, color=colors(c, True),
- line_thickness=line_thickness)
-
- # 控制视频发送频率
- if self.rate_check:
- time.sleep(1/self.rate)
- self.send_img.emit(im0)
- self.send_raw.emit(im0s if isinstance(im0s, np.ndarray) else im0s[0])
- self.send_statistic.emit(statistic_dic)
- # 如果自动录制
- if self.save_fold:
- os.makedirs(self.save_fold, exist_ok=True) # 路径不存在,自动保存
- # 如果输入是图片
- if self.vid_cap is None:
- save_path = os.path.join(self.save_fold,
- time.strftime('%Y_%m_%d_%H_%M_%S',
- time.localtime()) + '.jpg')
- cv2.imwrite(save_path, im0)
- else:
- if count == 1: # 第一帧时初始化录制
- # 以视频原始帧率进行录制
- ori_fps = int(self.vid_cap.get(cv2.CAP_PROP_FPS))
- if ori_fps == 0:
- ori_fps = 25
- # width = int(self.vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
- # height = int(self.vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
- width, height = im0.shape[1], im0.shape[0]
- save_path = os.path.join(self.save_fold, time.strftime('%Y_%m_%d_%H_%M_%S', time.localtime()) + '.mp4')
- self.out = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*"mp4v"), ori_fps,
- (width, height))
- self.out.write(im0)
- if percent == self.percent_length:
- print(count)
- self.send_percent.emit(0)
- self.send_msg.emit('检测结束')
- if hasattr(self, 'out'):
- self.out.release()
- # 正常跳出循环
- break
-
- except Exception as e:
- self.send_msg.emit('%s' % e)
- """Train a YOLOv5 model on a custom dataset
- Usage:
- $ python path/to/train.py --data coco128.yaml --weights yolov5s.pt --img 640
- """
-
- import argparse
- import logging
- import os
- import random
- import sys
- import time
- import warnings
- from copy import deepcopy
- from pathlib import Path
- from threading import Thread
-
- import math
- import numpy as np
- import torch.distributed as dist
- import torch.nn as nn
- import torch.nn.functional as F
- import torch.optim as optim
- import torch.optim.lr_scheduler as lr_scheduler
- import torch.utils.data
- import yaml
- from torch.cuda import amp
- from torch.nn.parallel import DistributedDataParallel as DDP
- from torch.utils.tensorboard import SummaryWriter
- from tqdm import tqdm
-
- FILE = Path(__file__).absolute()
- sys.path.append(FILE.parents[0].as_posix()) # add yolov5/ to path
-
- import val # for end-of-epoch mAP
- from models.experimental import attempt_load
- from models.yolo import Model
- from utils.autoanchor import check_anchors
- from utils.datasets import create_dataloader
- from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \
- strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \
- check_requirements, print_mutation, set_logging, one_cycle, colorstr
- from utils.google_utils import attempt_download
- from utils.loss import ComputeLoss
- from utils.plots import plot_images, plot_labels, plot_results, plot_evolution
- from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first, de_parallel
- from utils.wandb_logging.wandb_utils import WandbLogger, check_wandb_resume
- from utils.metrics import fitness
-
- LOGGER = logging.getLogger(__name__)
- LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
- RANK = int(os.getenv('RANK', -1))
- WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
-
-
- def train(hyp, # path/to/hyp.yaml or hyp dictionary
- opt,
- device,
- ):
- save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, = \
- opt.save_dir, opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
- opt.resume, opt.noval, opt.nosave, opt.workers
-
- # Directories
- save_dir = Path(save_dir)
- wdir = save_dir / 'weights'
- wdir.mkdir(parents=True, exist_ok=True) # make dir
- last = wdir / 'last.pt'
- best = wdir / 'best.pt'
- results_file = save_dir / 'results.txt'
-
- # Hyperparameters
- if isinstance(hyp, str):
- with open(hyp) as f:
- hyp = yaml.safe_load(f) # load hyps dict
- LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
-
- # Save run settings
- with open(save_dir / 'hyp.yaml', 'w') as f:
- yaml.safe_dump(hyp, f, sort_keys=False)
- with open(save_dir / 'opt.yaml', 'w') as f:
- yaml.safe_dump(vars(opt), f, sort_keys=False)
-
- # Configure
- plots = not evolve # create plots
- cuda = device.type != 'cpu'
- init_seeds(1 + RANK)
- with open(data) as f:
- data_dict = yaml.safe_load(f) # data dict
-
- # Loggers
- loggers = {'wandb': None, 'tb': None} # loggers dict
- if RANK in [-1, 0]:
- # TensorBoard
- if not evolve:
- prefix = colorstr('tensorboard: ')
- LOGGER.info(f"{prefix}Start with 'tensorboard --logdir {opt.project}', view at http://localhost:6006/")
- loggers['tb'] = SummaryWriter(str(save_dir))
-
- # W&B
- opt.hyp = hyp # add hyperparameters
- run_id = torch.load(weights).get('wandb_id') if weights.endswith('.pt') and os.path.isfile(weights) else None
- run_id = run_id if opt.resume else None # start fresh run if transfer learning
- wandb_logger = WandbLogger(opt, save_dir.stem, run_id, data_dict)
- loggers['wandb'] = wandb_logger.wandb
- if loggers['wandb']:
- data_dict = wandb_logger.data_dict
- weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp # may update weights, epochs if resuming
-
- nc = 1 if single_cls else int(data_dict['nc']) # number of classes
- names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
- assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, data) # check
- is_coco = data.endswith('coco.yaml') and nc == 80 # COCO dataset
-
- # Model
- pretrained = weights.endswith('.pt')
- if pretrained:
- with torch_distributed_zero_first(RANK):
- weights = attempt_download(weights) # download if not found locally
- ckpt = torch.load(weights, map_location=device) # load checkpoint
- model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
- exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys
- state_dict = ckpt['model'].float().state_dict() # to FP32
- state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect
- model.load_state_dict(state_dict, strict=False) # load
- LOGGER.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report
- else:
- model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
- with torch_distributed_zero_first(RANK):
- check_dataset(data_dict) # check
- train_path = data_dict['train']
- val_path = data_dict['val']
-
- # Freeze
- freeze = [] # parameter names to freeze (full or partial)
- for k, v in model.named_parameters():
- v.requires_grad = True # train all layers
- if any(x in k for x in freeze):
- print('freezing %s' % k)
- v.requires_grad = False
-
- # Optimizer
- nbs = 64 # nominal batch size
- accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing
- hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay
- LOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}")
-
- pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
- for k, v in model.named_modules():
- if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
- pg2.append(v.bias) # biases
- if isinstance(v, nn.BatchNorm2d):
- pg0.append(v.weight) # no decay
- elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
- pg1.append(v.weight) # apply decay
-
- if opt.adam:
- optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
- else:
- optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
-
- optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
- optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
- LOGGER.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
- del pg0, pg1, pg2
-
- # Scheduler https://arxiv.org/pdf/1812.01187.pdf
- # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
- if opt.linear_lr:
- lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
- else:
- lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
- scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
- # plot_lr_scheduler(optimizer, scheduler, epochs)
-
- # EMA
- ema = ModelEMA(model) if RANK in [-1, 0] else None
-
- # Resume
- start_epoch, best_fitness = 0, 0.0
- if pretrained:
- # Optimizer
- if ckpt['optimizer'] is not None:
- optimizer.load_state_dict(ckpt['optimizer'])
- best_fitness = ckpt['best_fitness']
-
- # EMA
- if ema and ckpt.get('ema'):
- ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
- ema.updates = ckpt['updates']
-
- # Results
- if ckpt.get('training_results') is not None:
- results_file.write_text(ckpt['training_results']) # write results.txt
-
- # Epochs
- start_epoch = ckpt['epoch'] + 1
- if resume:
- assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
- if epochs < start_epoch:
- LOGGER.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
- (weights, ckpt['epoch'], epochs))
- epochs += ckpt['epoch'] # finetune additional epochs
-
- del ckpt, state_dict
-
- # Image sizes
- gs = max(int(model.stride.max()), 32) # grid size (max stride)
- nl = model.model[-1].nl # number of detection layers (used for scaling hyp['obj'])
- imgsz = check_img_size(opt.imgsz, gs) # verify imgsz is gs-multiple
-
- # DP mode
- if cuda and RANK == -1 and torch.cuda.device_count() > 1:
- logging.warning('DP not recommended, instead use torch.distributed.run for best DDP Multi-GPU results.\n'
- 'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.')
- model = torch.nn.DataParallel(model)
-
- # SyncBatchNorm
- if opt.sync_bn and cuda and RANK != -1:
- raise Exception('can not train with --sync-bn, known issue https://github.com/ultralytics/yolov5/issues/3998')
- model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
- LOGGER.info('Using SyncBatchNorm()')
-
- # Trainloader
- train_loader, dataset = create_dataloader(train_path, imgsz, batch_size // WORLD_SIZE, gs, single_cls,
- hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=RANK,
- workers=workers, image_weights=opt.image_weights, quad=opt.quad,
- prefix=colorstr('train: '))
- mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
- nb = len(train_loader) # number of batches
- assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, data, nc - 1)
-
- # Process 0
- if RANK in [-1, 0]:
- val_loader = create_dataloader(val_path, imgsz, batch_size // WORLD_SIZE * 2, gs, single_cls,
- hyp=hyp, cache=opt.cache_images and not noval, rect=True, rank=-1,
- workers=workers, pad=0.5,
- prefix=colorstr('val: '))[0]
-
- if not resume:
- labels = np.concatenate(dataset.labels, 0)
- # c = torch.tensor(labels[:, 0]) # classes
- # cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
- # model._initialize_biases(cf.to(device))
- if plots:
- plot_labels(labels, names, save_dir, loggers)
-
- # Anchors
- if not opt.noautoanchor:
- check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
- model.half().float() # pre-reduce anchor precision
-
- # DDP mode
- if cuda and RANK != -1:
- model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)
-
- # Model parameters
- hyp['box'] *= 3. / nl # scale to layers
- hyp['cls'] *= nc / 80. * 3. / nl # scale to classes and layers
- hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl # scale to image size and layers
- hyp['label_smoothing'] = opt.label_smoothing
- model.nc = nc # attach number of classes to model
- model.hyp = hyp # attach hyperparameters to model
- model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou)
- model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
- model.names = names
-
- # Start training
- t0 = time.time()
- nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations)
- # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
- last_opt_step = -1
- maps = np.zeros(nc) # mAP per class
- results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
- scheduler.last_epoch = start_epoch - 1 # do not move
- scaler = amp.GradScaler(enabled=cuda)
- compute_loss = ComputeLoss(model) # init loss class
- LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
- f'Using {train_loader.num_workers} dataloader workers\n'
- f'Logging results to {save_dir}\n'
- f'Starting training for {epochs} epochs...')
- for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
- model.train()
-
- # Update image weights (optional)
- if opt.image_weights:
- # Generate indices
- if RANK in [-1, 0]:
- cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
- iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
- dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
- # Broadcast if DDP
- if RANK != -1:
- indices = (torch.tensor(dataset.indices) if RANK == 0 else torch.zeros(dataset.n)).int()
- dist.broadcast(indices, 0)
- if RANK != 0:
- dataset.indices = indices.cpu().numpy()
-
- # Update mosaic border
- # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
- # dataset.mosaic_border = [b - imgsz, -b] # height, width borders
-
- mloss = torch.zeros(4, device=device) # mean losses
- if RANK != -1:
- train_loader.sampler.set_epoch(epoch)
- pbar = enumerate(train_loader)
- LOGGER.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'labels', 'img_size'))
- if RANK in [-1, 0]:
- pbar = tqdm(pbar, total=nb) # progress bar
- optimizer.zero_grad()
- for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
- ni = i + nb * epoch # number integrated batches (since train start)
- imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0
-
- # Warmup
- if ni <= nw:
- xi = [0, nw] # x interp
- # model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
- accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
- for j, x in enumerate(optimizer.param_groups):
- # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
- x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
- if 'momentum' in x:
- x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
-
- # Multi-scale
- if opt.multi_scale:
- sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
- sf = sz / max(imgs.shape[2:]) # scale factor
- if sf != 1:
- ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
- imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
-
- # Forward
- with amp.autocast(enabled=cuda):
- pred = model(imgs) # forward
- loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
- if RANK != -1:
- loss *= WORLD_SIZE # gradient averaged between devices in DDP mode
- if opt.quad:
- loss *= 4.
-
- # Backward
- scaler.scale(loss).backward()
-
- # Optimize
- if ni - last_opt_step >= accumulate:
- scaler.step(optimizer) # optimizer.step
- scaler.update()
- optimizer.zero_grad()
- if ema:
- ema.update(model)
- last_opt_step = ni
-
- # Print
- if RANK in [-1, 0]:
- mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
- mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
- s = ('%10s' * 2 + '%10.4g' * 6) % (
- f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1])
- pbar.set_description(s)
-
- # Plot
- if plots and ni < 3:
- f = save_dir / f'train_batch{ni}.jpg' # filename
- Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
- if loggers['tb'] and ni == 0: # TensorBoard
- with warnings.catch_warnings():
- warnings.simplefilter('ignore') # suppress jit trace warning
- loggers['tb'].add_graph(torch.jit.trace(de_parallel(model), imgs[0:1], strict=False), [])
- elif plots and ni == 10 and loggers['wandb']:
- wandb_logger.log({'Mosaics': [loggers['wandb'].Image(str(x), caption=x.name) for x in
- save_dir.glob('train*.jpg') if x.exists()]})
-
- # end batch ------------------------------------------------------------------------------------------------
-
- # Scheduler
- lr = [x['lr'] for x in optimizer.param_groups] # for loggers
- scheduler.step()
-
- # DDP process 0 or single-GPU
- if RANK in [-1, 0]:
- # mAP
- ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride', 'class_weights'])
- final_epoch = epoch + 1 == epochs
- if not noval or final_epoch: # Calculate mAP
- wandb_logger.current_epoch = epoch + 1
- results, maps, _ = val.run(data_dict,
- batch_size=batch_size // WORLD_SIZE * 2,
- imgsz=imgsz,
- model=ema.ema,
- single_cls=single_cls,
- dataloader=val_loader,
- save_dir=save_dir,
- save_json=is_coco and final_epoch,
- verbose=nc < 50 and final_epoch,
- plots=plots and final_epoch,
- wandb_logger=wandb_logger,
- compute_loss=compute_loss)
-
- # Write
- with open(results_file, 'a') as f:
- f.write(s + '%10.4g' * 7 % results + '\n') # append metrics, val_loss
-
- # Log
- tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss
- 'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
- 'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss
- 'x/lr0', 'x/lr1', 'x/lr2'] # params
- for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
- if loggers['tb']:
- loggers['tb'].add_scalar(tag, x, epoch) # TensorBoard
- if loggers['wandb']:
- wandb_logger.log({tag: x}) # W&B
-
- # Update best mAP
- fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
- if fi > best_fitness:
- best_fitness = fi
- wandb_logger.end_epoch(best_result=best_fitness == fi)
-
- # Save model
- if (not nosave) or (final_epoch and not evolve): # if save
- ckpt = {'epoch': epoch,
- 'best_fitness': best_fitness,
- 'training_results': results_file.read_text(),
- 'model': deepcopy(de_parallel(model)).half(),
- 'ema': deepcopy(ema.ema).half(),
- 'updates': ema.updates,
- 'optimizer': optimizer.state_dict(),
- 'wandb_id': wandb_logger.wandb_run.id if loggers['wandb'] else None}
-
- # Save last, best and delete
- torch.save(ckpt, last)
- if best_fitness == fi:
- torch.save(ckpt, best)
- if loggers['wandb']:
- if ((epoch + 1) % opt.save_period == 0 and not final_epoch) and opt.save_period != -1:
- wandb_logger.log_model(last.parent, opt, epoch, fi, best_model=best_fitness == fi)
- del ckpt
-
- # end epoch ----------------------------------------------------------------------------------------------------
- # end training -----------------------------------------------------------------------------------------------------
- if RANK in [-1, 0]:
- LOGGER.info(f'{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.\n')
- if plots:
- plot_results(save_dir=save_dir) # save as results.png
- if loggers['wandb']:
- files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]]
- wandb_logger.log({"Results": [loggers['wandb'].Image(str(save_dir / f), caption=f) for f in files
- if (save_dir / f).exists()]})
-
- if not evolve:
- if is_coco: # COCO dataset
- for m in [last, best] if best.exists() else [last]: # speed, mAP tests
- results, _, _ = val.run(data_dict,
- batch_size=batch_size // WORLD_SIZE * 2,
- imgsz=imgsz,
- model=attempt_load(m, device).half(),
- single_cls=single_cls,
- dataloader=val_loader,
- save_dir=save_dir,
- save_json=True,
- plots=False)
-
- # Strip optimizers
- for f in last, best:
- if f.exists():
- strip_optimizer(f) # strip optimizers
- if loggers['wandb']: # Log the stripped model
- loggers['wandb'].log_artifact(str(best if best.exists() else last), type='model',
- name='run_' + wandb_logger.wandb_run.id + '_model',
- aliases=['latest', 'best', 'stripped'])
- wandb_logger.finish_run()
-
- torch.cuda.empty_cache()
- return results
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。