赞
踩
我将从以下几个方面来进行解说:
1.卷积神经网络的结构
2.卷积神经网络的计算
3.以AlexNet为例进行详细讲解
4.常见的两个卷积层设置的问题
卷积神经网络(CNN)由输入层、卷积层、激活函数、池化层、全连接层组成,即INPUT(输入层)-CONV(卷积层)-RELU(激活函数)-POOL(池化层)-FC(全连接层)
我们用一个图进行展示:
卷积神将网络的计算公式为:
N=(W-F+2P)/S+1
其中N:输出大小
W:输入大小
F:卷积核大小
P:填充值的大小
S:步长大小
下面举个例子看一下:
nn.Conv2d(in_channels=3,out_channels=96,kernel_size=11,stride=4,padding=2)
卷积一层的几个参数:
in_channels=3:表示的是输入的通道数,由于是RGB型的,所以通道数是3.
out_channels=96:表示的是输出的通道数,设定输出通道数的96(这个是可以根据自己的需要来设置的)
kernel_size=12:表示卷积核的大小是12x12的,也就是上面的 “F”, F=12
stride=4:表示的是步长为4,也就是上面的S, S=4
padding=2:表示的是填充值的大小为2,也就是上面的P, P=2
假如你的图像的输入size是256x256的,由计算公式知N=(256-12+2x2)/4+1=63,也就是输出size为63x63的
AlexNet网络结构图如下图所示:
有结构图可以看出该网络有8层:五个卷积层,三个全连接层。
我们利用的框架是pytorch。
卷积神经网络的设置包括卷积层的设置以及正反向传播的设置
卷积层的设置代码如下:
self.conv1 = torch.nn.Sequential( #input_size = 227*227*3 torch.nn.Conv2d(in_channels=3,out_channels=96,kernel_size=11,stride=4,padding=0), torch.nn.ReLU(), torch.nn.MaxPool2d(kernel_size=3, stride=2) #output_size = 27*27*96 ) self.conv2 = torch.nn.Sequential( #input_size = 27*27*96 torch.nn.Conv2d(96, 256, 5, 1, 2), torch.nn.ReLU(), torch.nn.MaxPool2d(3, 2) #output_size = 13*13*256 ) self.conv3 = torch.nn.Sequential( #input_size = 13*13*256 torch.nn.Conv2d(256, 384, 3, 1, 1), torch.nn.ReLU(), #output_size = 13*13*384 ) self.conv4 = torch.nn.Sequential( #input_size = 13*13*384 torch.nn.Conv2d(384, 384, 3, 1, 1), torch.nn.ReLU(), #output_size = 13*13*384 ) self.conv5 = torch.nn.Sequential( #input_size = 13*13*384 torch.nn.Conv2d(384, 256, 3, 1, 1), torch.nn.ReLU(), torch.nn.MaxPool2d(3, 2) #output_size = 6*6*256 )
self.dense = torch.nn.Sequential(
torch.nn.Linear(9216, 4096),
torch.nn.ReLU(),
torch.nn.Dropout(0.5),
torch.nn.Linear(4096, 4096),
torch.nn.ReLU(),
torch.nn.Dropout(0.5),
torch.nn.Linear(4096, 50)
)
下面我们一层一层的进行分析
卷积一层:
self.conv1 = torch.nn.Sequential( #input_size = 227*227*3
torch.nn.Conv2d(in_channels=3,out_channels=96,kernel_size=11,stride=4,padding=0),
torch.nn.ReLU(),
torch.nn.MaxPool2d(kernel_size=3, stride=2) #output_size = 27*27*96
)
下面详细介绍一下下
self.conv1 = torch.nn.Sequential( #input_size = 227*227*3
可以看到我们的输入为227x227x3的,也就是所size为227x227的,通道数是3,为RGB型图像
torch.nn.Conv2d(in_channels=3,out_channels=96,kernel_size=11,stride=4,padding=0),
有上面的介绍我们可以计算出其输出的大小为:N=(227-11+2x0)/4+1=55,即卷积后的尺寸是96x55x55的
神经元数目为555596 =290400个,本层的神经元数目为2727256 =186642个
激活函数Relu,在神经网络中的作用是:通过加权的输入进行非线性组合产生非线性决策边界
简单的来说就是增加非线性作用。
在深层卷积神经网络中使用激活函数同样也是增加非线性,主要是为了解决sigmoid函数带来的梯度消失问题。
关于Rule的具体指知识,这里不做详细的描述,以后再进行详细讲解
torch.nn.MaxPool2d(kernel_size=3, stride=2) #output_size = 27*27*96
MaxPool 最大池化层,池化层在卷积神经网络中的作用在于特征融合和降维。池化也是一种类似的卷积操作,只是池化层的所有参数都是超参数,是学习不到的。
这里的最大池化操作:将2x2尺寸内的所有像素值取最大值作为输出通道的像素值。
输出大小的计算和卷积层的计算过程一样就是利用公式N=(W-F+2P)/S+1,由公式计算得知,该输出大小
N=(55-3+2x0)/2+1=27,则输出为96x27x27,
卷积二层
self.conv2 = torch.nn.Sequential( #input_size = 27*27*96
torch.nn.Conv2d(96, 256, 5, 1, 2),
torch.nn.ReLU(),
torch.nn.MaxPool2d(3, 2) #output_size = 13*13*256
)
我们可以看到卷积2层的输入为96x27x27的,也就是上一层的输出,从这里也就知道,上一层的输出为下一层的输入。
卷积2层的计算过程和卷积1层的计算过程是一样的,具体不在详细描述
卷积2层最终输出为13x13x256,本层的神经元数目为27x27x256 =186642个
卷积3层最终输出为13x13x384,本层的神精元数目为13x13x384 =64896个
卷积4层最终输出为13x13x384,本层的神精元数目为13x13x384 = 64896个
卷积5层最终输出为6x6x256,本层的神精元数目为6x6x256=9216个
卷积层介绍完了,下面看一下全连接层(Linear)
全连接层的作用主要是负责逻辑推断,所有的参数都必须学习得到。
self.dense = torch.nn.Sequential(
torch.nn.Linear(9216, 4096),
torch.nn.ReLU(),
torch.nn.Dropout(0.5),
torch.nn.Linear(4096, 4096),
torch.nn.ReLU(),
torch.nn.Dropout(0.5),
torch.nn.Linear(4096, 50)
)
可以看到有3三层全连接层(与上面相连接,也就是第六、七、八层)
torch.nn.Linear(9216, 4096)
第一层全连接层(第六层)的作用有两个
第一:链接卷积层的输出
第二:去除空间信息(通道数),是一种将三维矩阵转变成向量的过程(一种全卷积操作)
其操作可以看成是输入图像为WxHxC,卷积核的尺寸为WxHxC,这样卷积后的尺寸为1x1x1,这样整个出入图像变成了一个数,一共有K个数(第一层全连接层后的神经元数)。
第6层输入数据的尺寸是6x6x256,采用6x6x256尺寸的滤波器对第六层的输入数据进行卷积运算;每个6x6x256尺寸的滤波器对第六层的输入数据进行卷积运算生成一个运算结果,通过一个神经元输出这个运算结果;共有4096个6x6x256尺寸的滤波器对输入数据进行卷积,通过4096个神经元的输出运算结果;然后通过ReLU激活函数以及dropout运算输出4096个本层的输出结果值。
第二层全连接层(第七层):
第6层输出的4096个数据与第7层的4096个神经元进行全连接,然后经由ReLU和Dropout进行处理后生成4096个数据。
第三层全连接层(第八层):
第7层输入的4096个数据与第8层的50个神经元进行全连接,经过训练后输出被训练的数值。
正反向传播的顺序设置代码如下:
def forward(self, x): #正向传播过程
conv1_out = self.conv1(x)
conv2_out = self.conv2(conv1_out)
conv3_out = self.conv3(conv2_out)
conv4_out = self.conv4(conv3_out)
conv5_out = self.conv5(conv4_out)
res = conv5_out.view(conv5_out.size(0), -1)
out = self.dense(res)
#print (out)
return out
这里的顺序就是:
self.conv1 = nn.Conv2d(3, 6, 5)
cove1d:用于文本数据,只对宽度进行卷积,对高度不进行卷积
cove2d:用于图像数据,对宽度和高度都进行卷积
Conv2d(输入通道数, 输出通道数, kernel_size(长和宽)),当卷积核为方形时,只写一个就可以
卷积核不是方形时,长和宽都要写:
self.conv1 = nn.Conv2d(3, 6, (5,3))
maxpooling有局部不变性而且可以提取显著特征的同时降低模型的参数,从而降低模型的过拟合。
因为只是提取了显著特征,而舍弃了不显著的信息,是的模型的参数减少了,从而一定程度上可以缓解过拟合的产生。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。