赞
踩
目录
利用pandas.DataFrame可以构建表格,通过列标属性调用列对象
举例
- import pandas as pd
- x = [
- ['PyTorch', '-', '.pt', True, True],
- ['TorchScript', 'torchscript', '.torchscript', True, True],
- ['ONNX', 'onnx', '.onnx', True, True],
- ['OpenVINO', 'openvino', '_openvino_model', True, False],
- ['TensorRT', 'engine', '.engine', False, True],
- ['CoreML', 'coreml', '.mlmodel', True, False],
- ['TensorFlow SavedModel', 'saved_model', '_saved_model', True, True],
- ['TensorFlow GraphDef', 'pb', '.pb', True, True],
- ['TensorFlow Lite', 'tflite', '.tflite', True, False],
- ['TensorFlow Edge TPU', 'edgetpu', '_edgetpu.tflite', False, False],
- ['TensorFlow.js', 'tfjs', '_web_model', False, False],
- ['PaddlePaddle', 'paddle', '_paddle_model', True, True],]
- df1 = pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU'])
- df2 = pd.DataFrame(x, index=list(['a','b','c','d','e','f','g','q','w','e','r','t']),columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU'])
- print(df1)
- print('=======================================')
- print(df2)
输出结果
- Format Argument Suffix CPU GPU
- 0 PyTorch - .pt True True
- 1 TorchScript torchscript .torchscript True True
- 2 ONNX onnx .onnx True True
- 3 OpenVINO openvino _openvino_model True False
- 4 TensorRT engine .engine False True
- 5 CoreML coreml .mlmodel True False
- 6 TensorFlow SavedModel saved_model _saved_model True True
- 7 TensorFlow GraphDef pb .pb True True
- 8 TensorFlow Lite tflite .tflite True False
- 9 TensorFlow Edge TPU edgetpu _edgetpu.tflite False False
- 10 TensorFlow.js tfjs _web_model False False
- 11 PaddlePaddle paddle _paddle_model True True
- =======================================
- Format Argument Suffix CPU GPU
- a PyTorch - .pt True True
- b TorchScript torchscript .torchscript True True
- c ONNX onnx .onnx True True
- d OpenVINO openvino _openvino_model True False
- e TensorRT engine .engine False True
- f CoreML coreml .mlmodel True False
- g TensorFlow SavedModel saved_model _saved_model True True
- q TensorFlow GraphDef pb .pb True True
- w TensorFlow Lite tflite .tflite True False
- e TensorFlow Edge TPU edgetpu _edgetpu.tflite False False
- r TensorFlow.js tfjs _web_model False False
- t PaddlePaddle paddle _paddle_model True True
可以看出 index参数为行标设置,columns为列标设置,且都需为列表形式,长度都需要与给出的列表横列数量一致(例子中的x)。
- import pandas as pd
- x = [
- ['PyTorch', '-', '.pt', True, True],
- ['TorchScript', 'torchscript', '.torchscript', True, True],
- ['ONNX', 'onnx', '.onnx', True, True],
- ['OpenVINO', 'openvino', '_openvino_model', True, False],
- ['TensorRT', 'engine', '.engine', False, True],
- ['CoreML', 'coreml', '.mlmodel', True, False],
- ['TensorFlow SavedModel', 'saved_model', '_saved_model', True, True],
- ['TensorFlow GraphDef', 'pb', '.pb', True, True],
- ['TensorFlow Lite', 'tflite', '.tflite', True, False],
- ['TensorFlow Edge TPU', 'edgetpu', '_edgetpu.tflite', False, False],
- ['TensorFlow.js', 'tfjs', '_web_model', False, False],
- ['PaddlePaddle', 'paddle', '_paddle_model', True, True],]
- df1 = pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU'])
- df2 = pd.DataFrame(x, index=list(['a','b','c','d','e','f','g','q','w','e','r','t']),columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU'])
- # print(df1)
- # print('=======================================')
- # print(df2)
- print(df1.Suffix)
- print('=====================================')
- print(df2.Format)
结合这一中的输出表看,其输出结果如下
- 0 .pt
- 1 .torchscript
- 2 .onnx
- 3 _openvino_model
- 4 .engine
- 5 .mlmodel
- 6 _saved_model
- 7 .pb
- 8 .tflite
- 9 _edgetpu.tflite
- 10 _web_model
- 11 _paddle_model
- Name: Suffix, dtype: object
- =====================================
- a PyTorch
- b TorchScript
- c ONNX
- d OpenVINO
- e TensorRT
- f CoreML
- g TensorFlow SavedModel
- q TensorFlow GraphDef
- w TensorFlow Lite
- e TensorFlow Edge TPU
- r TensorFlow.js
- t PaddlePaddle
- Name: Format, dtype: object
可以看到 输出的是一个 列的类实例,若继续调用这个列中的每个元素,可以通过下列语句实现
- print(df1.Suffix[0])
- print('=====================================')
- print(df2.Format[1])
- print('=====================================')
即通过索引调用,输出为
- .pt
- =====================================
- TorchScript
- =====================================
或者通过该属性所在的行标进行调用
print(df2.Format['a'])
输出为
PyTorch
目前还不清楚,上面的debug显示其不包含具有 行信息的属性,不过可以通过 values这个属性来调用行,
values也是个类实例,其值为numpy矩阵,所以通过矩阵形式调用行,例如
- print(df1.values[0, :])
- >>['PyTorch' '-' '.pt' True True]
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。