当前位置:   article > 正文

SM4算法简介

sm4

  SM4为分组对称密码算法,明文、密文以及密钥长度均为 128 128 128 bits。SM4算法主要包括加解密算法和密钥扩展算法,采用 32 32 32 轮非线性迭代的数学结构,其中算法中每一次迭代运算为一轮非线性变换。主要操作包括异或、合成置换、非线性迭代、反序变换、循环移位以及S盒变换等。加密算法和解密算法的数学架构、运算法则、运算操作等都是完全相同的,解密运算只需要将加密算法中生成的轮密钥进行反序使用。其流程图如下图所示。
SM4密码算法加密流程图
图1. SM4密码算法加密流程图

密钥扩展算法

   设加密主密钥 M K = ( M K 0 , M K 1 , M K 2 , M K 3 ) MK = (MK_0, MK_1, MK_2, MK_3) MK=(MK0,MK1,MK2,MK3) M K i ∈ { 0 , 1 } 32 MK_i \in \{0,1\}^{32} MKi{0,1}32
( K 0 , K 1 , K 2 , K 3 ) = ( M K 0 ⊕ F K 0 , M K 1 ⊕ F K 1 , M K 2 ⊕ F K 2 , M K 3 ⊕ F K 3 ) (K_0,K_1,K_2, K_3) = (MK_0 \oplus FK_0, MK_1 \oplus FK_1, MK_2 \oplus FK_2, MK_3 \oplus FK_3) (K0,K1,K2,K3)=(MK0FK0,MK1FK1,MK2FK2,MK3FK3)
r k i = K i + 4 = K i ⊕ T ′ ( K i + 1 ⊕ K i + 2 ⊕ K i + 3 ⊕ C K i ) rk_i = K_{i+4} = K_i \oplus T^{'}(K_{i+1} \oplus K_{i+2} \oplus K_{i+3} \oplus CK_i) rki=Ki+4=KiT(Ki+1Ki+2Ki+3CKi)

T ′ T^{'} T变换

T ′ ( B ) = B ⊕ ( B < < < 13 ) ⊕ ( B < < < 23 ) T^{'}(B) = B \oplus (B <<< 13) \oplus (B <<< 23) T(B)=B(B<<<13)(B<<<23)

系统参数 F K FK FK

F K i FK_i FKi十六进制取值
F K 0 FK_0 FK0A3B1BAC6
F K 1 FK_1 FK156AA3350
F K 2 FK_2 FK2677D9197
F K 3 FK_3 FK3B27022DC

固定参数 C K CK CK

固定参数 CK 的取值
000070e151c232a31383f464d545b6269
70777e858c939aa1a8afb6bdc4cbd2d9
e0e7eef5fc030a11181f262d343b4249
50575e656c737a81888f969da4abb2b9
c0c7ced5dce3eaf1f8ff060d141b2229
3037aeb54c535a61686f767d848b9299
a0a7aeb5bcc3cad1d8dfe6edf4fb0209
10171e252e333a41484f565d646b7279

加解密算法

   设输入明文为: ( X 0 , X 1 , X 2 , X 3 ) ∈ { 0 , 1 } 32 × 4 (X_0, X_1, X_2, X_3) \in \{0,1\}^{32 \times 4} (X0,X1,X2,X3){0,1}32×4, 密文输出为: ( Y 0 , Y 1 , Y 2 , Y 3 ) ∈ { 0 , 1 } 32 × 4 (Y_0, Y_1, Y_2, Y_3) \in \{0,1\}^{32 \times 4} (Y0,Y1,Y2,Y3){0,1}32×4, 轮密钥 r k i ∈ { 0 , 1 } 32 × 4 rk_i \in \{0,1\}^{32 \times 4} rki{0,1}32×4, 其中 i ∈ { 0 , 1 , ⋯ 31 } i \in \{0,1,\cdots 31\} i{0,1,31}.SM4密码算法的具体加密过程如下:
X i + 1 = F ( X i , X i + 1 , X i + 2 , X i + 3 , r k i ) = X i ⊕ T ( X i + 1 ⊕ X i + 2 ⊕ X i + 3 ⊕ r k i ) X_{i+1} = F(X_{i}, X_{i+1}, X_{i+2}, X_{i+3}, rk_i)=X_{i}\oplus T(X_{i+1}\oplus X_{i+2}\oplus X_{i+3}\oplus rk_i) Xi+1=F(Xi,Xi+1,Xi+2,Xi+3,rki)=XiT(Xi+1Xi+2Xi+3rki);
( Y 0 , Y 1 , Y 2 , Y 3 ) = R ( X 32 , X 33 , X 34 , X 35 ) = ( X 35 , X 34 , X 33 , X 32 ) (Y_0, Y_1, Y_2, Y_3) = R(X_{32}, X_{33}, X_{34}, X_{35}) = (X_{35}, X_{34}, X_{33}, X_{32}) (Y0,Y1,Y2,Y3)=R(X32,X33,X34,X35)=(X35,X34,X33,X32)

合成置换 T

   由非线性变换 τ \tau τ和线性变换 L L L的转换, T ( ⋅ ) = L ( τ ( ⋅ ) ) T(\cdot)=L(\tau(\cdot)) T()=L(τ())
非线性变换 τ \tau τ : 长度为 32 bits, 由4 个并行的8位输入输出的S盒组成,表示为 S b o x ( ⋅ ) Sbox(\cdot) Sbox()
( B 0 , B 1 , B 2 , B 3 ) = τ ( A ) = ( S b o x ( A 0 ) , S b o x ( A 1 ) , S b o x ( A 2 ) , S b o x ( A 3 ) ) (B_0, B_1, B_2, B_3) = \tau(A) = (Sbox(A_0), Sbox(A_1), Sbox(A_2), Sbox(A_3)) (B0,B1,B2,B3)=τ(A)=(Sbox(A0),Sbox(A1),Sbox(A2),Sbox(A3))
线性变换 L L L : B = L ( A ) = A ⊕ ( A < < < 2 ) ⊕ ( A < < < 10 ) ⊕ ( A < < < 18 ) ⊕ ( A < < < 24 ) B = L(A) = A\oplus(A <<< 2)\oplus(A <<< 10)\oplus(A <<< 18)\oplus(A <<< 24) B=L(A)=A(A<<<2)(A<<<10)(A<<<18)(A<<<24)

S盒

   S盒是SM4算法中唯一的非线性逻辑单元,国家密码局公布的SM4密码时,直接给出了算法中S盒的查找表信息,输入为8 bits,其中,高4bits为查找表的行信息,后4bits为查找表的列信息。

-0123456789abcdef
00xd60x900xc90xfe0xcc0xe10x3d0xb70x160xb60x140xc20x280xfb0x2c0x05
10x2b0x670x9a0x760x2a0xbe0x040xc30xaa0x440x130x260x490x860x060x99
20x9c0x420x500xf40x910xef0x980x7a0x330x540x0b0x430xed0xcf0xac0x62
30xe40xb30x1c0xa90xc90x080xe80x950x800xdf0x940xfa0x750x8f0x3f0xa6
40x470x070xa70xfc0xf30x730x170xba0x830x590x3c0x190xe60x850x4f0xa8
50x680x6b0x810xb20x710x640xda0x8b0xf80xeb0x0f0x4b0x700x560x9d0x35
60x1e0x240x0e0x5e0x630x580xd10xa20x250x220x7c0x3b0x010x210x780x87
70xd40x000x460x570x9f0xd30x270x520x4c0x360x020xe70xa00xc40xc80x9e
80xea0xbf0x8a0xd20x400xc70x380xb50xa30xf70xf20xce0xf90x610x150xa1
90xe00xae0x5d0xa40x9b0x340x1a0x550xad0x930x320x300xf50x8c0xb10xe3
a0x1d0xf60xe20x2e0x820x660xca0x600xc00x290x230xab0x0d0x530x4e0x6f
b0xd50xdb0x370x450xde0xfd0x8e0x2f0x030xff0x6a0x720x6d0x6c0x5b0x51
c0x8d0x1b0xaf0x920xbb0xdd0xbc0x7f0x110xd90x5c0x410x1f0x100x5a0xd8
d0x0a0xc10x310x880xa50xcd0x7b0xbd0x2d0x740xd00x120xb80xe50xb40xb0
e0x890x690x970x4a0x0c0x960x770x7e0x650xb90xf10x090xc50x6e0xc60x84
f0x180xf00x7d0xec0x3a0xdc0x4d0x200x790xee0x5f0x3e0xd70xcb0x390x48
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/2023面试高手/article/detail/161562?site
推荐阅读
相关标签
  

闽ICP备14008679号