当前位置:   article > 正文

Linux内核队列queue.h

Linux内核队列queue.h

一、简介

queue.h是一个非常经典的文件,定义了一系列宏的操作,它定义了一系列的宏操作,实现了链表,尾队列和循环链表
queue.h定义了5个基本的数据类型

  • 单向无尾链表
  • 单向有尾链表
  • 双向无尾链表
  • 双向有尾链表
  • 循环链表

queue相关链表/队列的使用流程为:

  1. 定义自己的结构体
  2. 在结构体中使用XXXX_ENTRY定义链表/队列成员变量
  3. 使用XXXX_HEAD定义一个链表/队列头
  4. 使用XXXX_INIT初始化链表/队列头(也可在定义时初始化)
  5. 使用相关的INSERT、REMOVE、FOREACH、REPLACE方法操作队列

几种类型支持的操作:
在这里插入图片描述

二、SLIST单向无尾链表

2.1 介绍

SLIST是Singly-linked List的缩写,意为单向无尾链表。
在这里插入图片描述
SLIST适合数据量非常大并且几乎不需要删除数据的场合,或者当作堆栈使用。
SLIST相关的源码:

/*
 * Singly-linked List definitions.
 */
#define SLIST_HEAD(name, type)                                              \
struct name {                                                               \
    struct type *slh_first; /* first element */                             \
}

#define SLIST_HEAD_INITIALIZER(head)                                        \
    { NULL }

#define SLIST_ENTRY(type)                                                   \
struct {                                                                    \
    struct type *sle_next;  /* next element */                              \
}

/*
 * Singly-linked List functions.
 */
#define SLIST_INIT(head) do {                                               \
    (head)->slh_first = NULL;                                               \
} while (/*CONSTCOND*/0)

#define SLIST_INSERT_AFTER(slistelm, elm, field) do {                       \
    (elm)->field.sle_next = (slistelm)->field.sle_next;                     \
    (slistelm)->field.sle_next = (elm);                                     \
} while (/*CONSTCOND*/0)

#define SLIST_INSERT_HEAD(head, elm, field) do {                            \
    (elm)->field.sle_next = (head)->slh_first;                              \
    (head)->slh_first = (elm);                                              \
} while (/*CONSTCOND*/0)

#define SLIST_REMOVE_HEAD(head, field) do {                                 \
    (head)->slh_first = (head)->slh_first->field.sle_next;                  \
} while (/*CONSTCOND*/0)

#define SLIST_REMOVE(head, elm, type, field) do {                           \
    if ((head)->slh_first == (elm)) {                                       \
        SLIST_REMOVE_HEAD((head), field);                                   \
    }                                                                       \
    else {                                                                  \
        struct type *curelm = (head)->slh_first;                            \
        while(curelm->field.sle_next != (elm))                              \
            curelm = curelm->field.sle_next;                                \
        curelm->field.sle_next =                                            \
            curelm->field.sle_next->field.sle_next;                         \
    }                                                                       \
} while (/*CONSTCOND*/0)

#define SLIST_FOREACH(var, head, field)                                     \
    for ((var) = SLIST_FIRST((head));                                       \
        (var);                                                              \
        (var) = SLIST_NEXT((var), field) )

#define SLIST_FOREACH_PREVPTR(var, varp, head, field)                       \
    for ((varp) = &SLIST_FIRST((head));                                     \
        ((var) = *(varp)) != NULL;                                          \
        (varp) = &SLIST_NEXT((var), field) )

/*
 * Singly-linked List access methods.
 */
#define SLIST_EMPTY(head)       ((head)->slh_first == NULL)
#define SLIST_FIRST(head)       ((head)->slh_first)
#define SLIST_NEXT(elm, field)  ((elm)->field.sle_next)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66

2.2 操作

与单向链表相关的宏、方法和函数有:

// definitions
SLIST_HEAD(name, type)
SLIST_HEAD_INITIALIZER(head)
SLIST_ENTRY(type)
// access methods
SLIST_FIRST(head)
SLIST_END(head)
SLIST_EMPTY(head)
SLIST_NEXT(elm, field)
LIST_FOREACH(var, head, field)
SLIST_FOREACH_PREVPTR(var, varp, head, field)
// functions
SLIST_INIT(head)
SLIST_INSERT_AFTER(slistelm, elm, field)
SLIST_INSERT_HEAD(head, elm, field)
SLIST_REMOVE_NEXT(head, elm, field)
SLIST_REMOVE_HEAD(head, field)
SLIST_REMOVE(head, elm, type, field)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

宏定义说明

  • SLIST_HEAD用于定义一个单向链表数据结构体的头变量,该结构体只有一个指针成员slh_first,指向第一个type类型的数据结构;name可以不用(填写);
  • SLIST_HEAD_INITIALIZER用于在定义时初始化SLIST_HEAD定义的数据结构体的头变量;head可以不用填写;
  • SLIST_ENTRY则用于定义一个(用户)结构体的成员变量,该成员变量只包含一个指向type类型的指针sle_next;

与单向链表相关的访问方法有6个

  • SLIST_FIRST用于获取单向链表的第一个元素;
  • SLIST_END定义了尾部的判断标准;
  • SLIST_EMPTY用于判断单向链表是否为空:空则返回true,否则返回false;
  • SLIST_NEXT用于获取elm元素的下一个元素,field是前面用SLIST_ENTRY定义的成员变量名;
  • SLIST_FOREACH用于遍历单向链表,var是临时变量,head是链表头指针(SLIST_HEAD定义的变量),field是SLIST_ENTRY定义的成员变量名;
  • SLIST_FOREACH_PREVPTR与SLIST_FOREACH类似,用于遍历单向链表,不过提供更多的一个临时指针变量varp,指向var指向元素的地址;

与单向链表相关的函数有6个

  • SLIST_INIT用于初始化SLIST_HEAD定义的头指针变量;当然也可以在使用SLIST_HEAD定义头指针变量时同时使用SLIST_HEAD_INITIALIZER进行初始化;
  • SLIST_INSERT_AFTER用于将元素elm插入到当前链表元素slistelm的后面;
  • SLIST_INSERT_HEAD用于将元素elm插入到当前链表head的头部;head是SLIST_HEAD定义的链表头指针;
  • SLIST_REMOVE_NEXT用于将elm后面的元素删除,head未使用;注意删除时判断elm后面是否还有元素,否则会崩溃;
  • SLIST_REMOVE_HEAD用于删除第一个元素;注意删除时判断head是否为空,否则会崩溃;
  • SLIST_REMOVE用于从head链表中删除elm元素;注意首先判断elm元素是否在head链表中,否则会崩溃;

2.3 例子

#include <stdio.h>
#include <stdlib.h>
#include "queue.h"

struct SLIST_ITEM {
    int value;
    SLIST_ENTRY(SLIST_ITEM) entry;
};
int main(void) {
    int i;
    SLIST_HEAD(,SLIST_ITEM) slist_head;
    SLIST_INIT(&slist_head);
    if (SLIST_EMPTY(&slist_head))
        printf("single list is empty\n");
    struct SLIST_ITEM *item;
    struct SLIST_ITEM *item_temp;
    for( i = 0; i < 10; i += 1)
    {
            item = (struct SLIST_ITEM *)malloc(sizeof(struct SLIST_ITEM));
            item->value = i;
            item->entry.sle_next = NULL;
            SLIST_INSERT_HEAD(&slist_head, item, entry);
    }
    printf("after insert 10 item to single list:\n");
    SLIST_FOREACH(item, &slist_head, entry)
            printf("item value = %d\n", item->value);
    

    while( SLIST_EMPTY(&slist_head) == 0 ){
            item_temp = (&slist_head)->slh_first;
            SLIST_REMOVE(&slist_head,(&slist_head)->slh_first,SLIST_ITEM,entry);
            free(item_temp);
    }

    printf("here");
    if ( SLIST_EMPTY(&slist_head) )
            printf("single list is empty\n");        
    return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39

在这里插入图片描述

  • SLIST_INSERT_HEAD(&slist_head, item, entry)
    从头部插入元素,第一个参数为头节点,第一个参数为要插入的元素,第三个参数为自定义结构体中,自定义的SLIST_ENTRY(SLIST_ITEM)结构体变量名称。
  • SLIST_REMOVE(&slist_head,(&slist_head)->slh_first,SLIST_ITEM,entry)
    删除对应元素( 内部仅是指针指向的改变,没有真正释放空间 )

三、STAILQ单向有尾链表

STAILQ 是 Singly-linked Tail queue 的缩写,意为单向有尾链表。有尾链表可作队列使用。
在这里插入图片描述
STAILQ相关的源码

/*
 * Singly-linked Tail queue declarations.
 */
#define STAILQ_HEAD(name, type)                                             \
struct name {                                                               \
    struct type *stqh_first;    /* first element */                         \
    struct type **stqh_last;    /* addr of last next element */             \
}

#define STAILQ_HEAD_INITIALIZER(head)                                       \
    { NULL, &(head).stqh_first }

#define STAILQ_ENTRY(type)                                                  \
struct {                                                                    \
    struct type *stqe_next; /* next element */                              \
}

/*
 * Singly-linked Tail queue functions.
 */
#define STAILQ_INIT(head) do {                                              \
    (head)->stqh_first = NULL;                                              \
    (head)->stqh_last = &(head)->stqh_first;                                \
} while (/*CONSTCOND*/0)

#define STAILQ_INSERT_HEAD(head, elm, field) do {                           \
    if (((elm)->field.stqe_next = (head)->stqh_first) == NULL)              \
        (head)->stqh_last = &(elm)->field.stqe_next;                        \
    (head)->stqh_first = (elm);                                             \
} while (/*CONSTCOND*/0)

#define STAILQ_INSERT_TAIL(head, elm, field) do {                           \
    (elm)->field.stqe_next = NULL;                                          \
    *(head)->stqh_last = (elm);                                             \
    (head)->stqh_last = &(elm)->field.stqe_next;                            \
} while (/*CONSTCOND*/0)

#define STAILQ_INSERT_AFTER(head, listelm, elm, field) do {                 \
    if (((elm)->field.stqe_next = (listelm)->field.stqe_next) == NULL)      \
        (head)->stqh_last = &(elm)->field.stqe_next;                        \
    (listelm)->field.stqe_next = (elm);                                     \
} while (/*CONSTCOND*/0)

#define STAILQ_REMOVE_HEAD(head, field) do {                                \
    if (((head)->stqh_first = (head)->stqh_first->field.stqe_next) == NULL) \
        (head)->stqh_last = &(head)->stqh_first;                            \
} while (/*CONSTCOND*/0)

#define STAILQ_REMOVE(head, elm, type, field) do {                          \
    if ((head)->stqh_first == (elm)) {                                      \
        STAILQ_REMOVE_HEAD((head), field);                                  \
    } else {                                                                \
        struct type *curelm = (head)->stqh_first;                           \
        while (curelm->field.stqe_next != (elm))                            \
            curelm = curelm->field.stqe_next;                               \
        if ((curelm->field.stqe_next =                                      \
            curelm->field.stqe_next->field.stqe_next) == NULL)              \
                (head)->stqh_last = &(curelm)->field.stqe_next;             \
    }                                                                       \
} while (/*CONSTCOND*/0)

#define STAILQ_FOREACH(var, head, field)                                    \
    for ((var) = ((head)->stqh_first);                                      \
        (var);                                                              \
        (var) = ((var)->field.stqe_next))

#define STAILQ_CONCAT(head1, head2) do {                                    \
    if (!STAILQ_EMPTY((head2))) {                                           \
        *(head1)->stqh_last = (head2)->stqh_first;                          \
        (head1)->stqh_last = (head2)->stqh_last;                            \
        STAILQ_INIT((head2));                                               \
    }                                                                       \
} while (/*CONSTCOND*/0)

/*
 * Singly-linked Tail queue access methods.
 */
#define STAILQ_EMPTY(head)          ((head)->stqh_first == NULL)
#define STAILQ_FIRST(head)          ((head)->stqh_first)
#define STAILQ_NEXT(elm, field)     ((elm)->field.stqe_next)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80

四、LIST双向无尾链表

双向链表有前向的指针,因此可以执行一些前向操作,而且无需遍历链表便可以删除一些节点。
在这里插入图片描述
LIST相关的源码

/*
 * List definitions.
 */
#define LIST_HEAD(name, type)                                               \
struct name {                                                               \
    struct type *lh_first;  /* first element */                             \
}

#define LIST_HEAD_INITIALIZER(head)                                         \
    { NULL }

#define LIST_ENTRY(type)                                                    \
struct {                                                                    \
    struct type *le_next;   /* next element */                              \
    struct type **le_prev;  /* address of previous next element */          \
}

/*
 * List functions.
 */
#define LIST_INIT(head) do {                                                \
    (head)->lh_first = NULL;                                                \
} while (/*CONSTCOND*/0)

#define LIST_INSERT_AFTER(listelm, elm, field) do {                         \
    if (((elm)->field.le_next = (listelm)->field.le_next) != NULL)          \
        (listelm)->field.le_next->field.le_prev =                           \
            &(elm)->field.le_next;                                          \
    (listelm)->field.le_next = (elm);                                       \
    (elm)->field.le_prev = &(listelm)->field.le_next;                       \
} while (/*CONSTCOND*/0)

#define LIST_INSERT_BEFORE(listelm, elm, field) do {                        \
    (elm)->field.le_prev = (listelm)->field.le_prev;                        \
    (elm)->field.le_next = (listelm);                                       \
    *(listelm)->field.le_prev = (elm);                                      \
    (listelm)->field.le_prev = &(elm)->field.le_next;                       \
} while (/*CONSTCOND*/0)

#define LIST_INSERT_HEAD(head, elm, field) do {                             \
    if (((elm)->field.le_next = (head)->lh_first) != NULL)                  \
        (head)->lh_first->field.le_prev = &(elm)->field.le_next;            \
    (head)->lh_first = (elm);                                               \
    (elm)->field.le_prev = &(head)->lh_first;                               \
} while (/*CONSTCOND*/0)

#define LIST_REMOVE(elm, field) do {                                        \
    if ((elm)->field.le_next != NULL)                                       \
        (elm)->field.le_next->field.le_prev =                               \
            (elm)->field.le_prev;                                           \
    *(elm)->field.le_prev = (elm)->field.le_next;                           \
} while (/*CONSTCOND*/0)

#define LIST_FOREACH(var, head, field)                                      \
    for ((var) = ((head)->lh_first);                                        \
        (var);                                                              \
        (var) = ((var)->field.le_next))

/*
 * List access methods.
 */
#define LIST_EMPTY(head)        ((head)->lh_first == NULL)
#define LIST_FIRST(head)        ((head)->lh_first)
#define LIST_NEXT(elm, field)   ((elm)->field.le_next)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64

五、TAILQ双向有尾链表

TAILQ 是 Tail queue 的缩写,意为双向有尾链表。
有尾链表可作队列使用。
双向有尾链表兼具了双向链表和有尾链表的特点。
在这里插入图片描述
TAILQ相关的源码

/*
 * Tail queue definitions.
 */
#define TAILQ_HEAD(name, type)                                              \
struct name {                                                               \
    struct type *tqh_first;     /* first element */                         \
    struct type **tqh_last;     /* addr of last next element */             \
}

#define TAILQ_HEAD_INITIALIZER(head)                                        \
    { NULL, &(head).tqh_first }

#define TAILQ_ENTRY(type)                                                   \
struct {                                                                    \
    struct type *tqe_next;      /* next element */                          \
    struct type **tqe_prev;     /* address of previous next element */      \
}

/*
 * Tail queue functions.
 */
#define TAILQ_INIT(head) do {                                               \
    (head)->tqh_first = NULL;                                               \
    (head)->tqh_last = &(head)->tqh_first;                                  \
} while (/*CONSTCOND*/0)

#define TAILQ_INSERT_HEAD(head, elm, field) do {                            \
    if (((elm)->field.tqe_next = (head)->tqh_first) != NULL)                \
        (head)->tqh_first->field.tqe_prev = &(elm)->field.tqe_next;         \
    else                                                                    \
        (head)->tqh_last = &(elm)->field.tqe_next;                          \
    (head)->tqh_first = (elm);                                              \
    (elm)->field.tqe_prev = &(head)->tqh_first;                             \
} while (/*CONSTCOND*/0)

#define TAILQ_INSERT_TAIL(head, elm, field) do {                            \
    (elm)->field.tqe_next = NULL;                                           \
    (elm)->field.tqe_prev = (head)->tqh_last;                               \
    *(head)->tqh_last = (elm);                                              \
    (head)->tqh_last = &(elm)->field.tqe_next;                              \
} while (/*CONSTCOND*/0)

#define TAILQ_INSERT_AFTER(head, listelm, elm, field) do {                  \
    if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)        \
        (elm)->field.tqe_next->field.tqe_prev = &(elm)->field.tqe_next;     \
    else                                                                    \
        (head)->tqh_last = &(elm)->field.tqe_next;                          \
    (listelm)->field.tqe_next = (elm);                                      \
    (elm)->field.tqe_prev = &(listelm)->field.tqe_next;                     \
} while (/*CONSTCOND*/0)

#define TAILQ_INSERT_BEFORE(listelm, elm, field) do {                       \
    (elm)->field.tqe_prev = (listelm)->field.tqe_prev;                      \
    (elm)->field.tqe_next = (listelm);                                      \
    *(listelm)->field.tqe_prev = (elm);                                     \
    (listelm)->field.tqe_prev = &(elm)->field.tqe_next;                     \
} while (/*CONSTCOND*/0)

#define TAILQ_REMOVE(head, elm, field) do {                                 \
    if (((elm)->field.tqe_next) != NULL)                                    \
        (elm)->field.tqe_next->field.tqe_prev = (elm)->field.tqe_prev;      \
    else                                                                    \
        (head)->tqh_last = (elm)->field.tqe_prev;                           \
    *(elm)->field.tqe_prev = (elm)->field.tqe_next;                         \
} while (/*CONSTCOND*/0)

#define TAILQ_FOREACH(var, head, field)                                     \
    for ((var) = ((head)->tqh_first);                                       \
        (var);                                                              \
        (var) = ((var)->field.tqe_next))

#define TAILQ_FOREACH_REVERSE(var, head, headname, field)                   \
    for ((var) = (*(((struct headname *)((head)->tqh_last))->tqh_last));    \
        (var);                                                              \
        (var) = (*(((struct headname *)((var)->field.tqe_prev))->tqh_last)))

#define TAILQ_CONCAT(head1, head2, field) do {                              \
    if (!TAILQ_EMPTY(head2)) {                                              \
        *(head1)->tqh_last = (head2)->tqh_first;                            \
        (head2)->tqh_first->field.tqe_prev = (head1)->tqh_last;             \
        (head1)->tqh_last = (head2)->tqh_last;                              \
        TAILQ_INIT((head2));                                                \
    }                                                                       \
} while (/*CONSTCOND*/0)

/*
 * Tail queue access methods.
 */
#define TAILQ_EMPTY(head)       ((head)->tqh_first == NULL)
#define TAILQ_FIRST(head)       ((head)->tqh_first)
#define TAILQ_NEXT(elm, field)  ((elm)->field.tqe_next)

#define TAILQ_LAST(head, headname)                                          \
    (*(((struct headname *)((head)->tqh_last))->tqh_last))

#define TAILQ_PREV(elm, headname, field)                                    \
    (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97

六、CIRCLEQ循环链表

CIRCLEQ 是 Circular queue 的缩写,意为循环链表。
在这里插入图片描述
CIRCLEQ相关的源码

/*
 * Circular queue definitions.
 */
#define CIRCLEQ_HEAD(name, type)                                            \
struct name {                                                               \
    struct type *cqh_first;     /* first element */                         \
    struct type *cqh_last;      /* last element */                          \
}

#define CIRCLEQ_HEAD_INITIALIZER(head)                                      \
    { (void *)&head, (void *)&head }

#define CIRCLEQ_ENTRY(type)                                                 \
struct {                                                                    \
    struct type *cqe_next;      /* next element */                          \
    struct type *cqe_prev;      /* previous element */                      \
}

/*
 * Circular queue functions.
 */
#define CIRCLEQ_INIT(head) do {                                             \
    (head)->cqh_first = (void *)(head);                                     \
    (head)->cqh_last = (void *)(head);                                      \
} while (/*CONSTCOND*/0)

#define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do {                \
    (elm)->field.cqe_next = (listelm)->field.cqe_next;                      \
    (elm)->field.cqe_prev = (listelm);                                      \
    if ((listelm)->field.cqe_next == (void *)(head))                        \
        (head)->cqh_last = (elm);                                           \
    else                                                                    \
        (listelm)->field.cqe_next->field.cqe_prev = (elm);                  \
    (listelm)->field.cqe_next = (elm);                                      \
} while (/*CONSTCOND*/0)

#define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do {               \
    (elm)->field.cqe_next = (listelm);                                      \
    (elm)->field.cqe_prev = (listelm)->field.cqe_prev;                      \
    if ((listelm)->field.cqe_prev == (void *)(head))                        \
        (head)->cqh_first = (elm);                                          \
    else                                                                    \
        (listelm)->field.cqe_prev->field.cqe_next = (elm);                  \
    (listelm)->field.cqe_prev = (elm);                                      \
} while (/*CONSTCOND*/0)

#define CIRCLEQ_INSERT_HEAD(head, elm, field) do {                          \
    (elm)->field.cqe_next = (head)->cqh_first;                              \
    (elm)->field.cqe_prev = (void *)(head);                                 \
    if ((head)->cqh_last == (void *)(head))                                 \
        (head)->cqh_last = (elm);                                           \
    else                                                                    \
        (head)->cqh_first->field.cqe_prev = (elm);                          \
    (head)->cqh_first = (elm);                                              \
} while (/*CONSTCOND*/0)

#define CIRCLEQ_INSERT_TAIL(head, elm, field) do {                          \
    (elm)->field.cqe_next = (void *)(head);                                 \
    (elm)->field.cqe_prev = (head)->cqh_last;                               \
    if ((head)->cqh_first == (void *)(head))                                \
        (head)->cqh_first = (elm);                                          \
    else                                                                    \
        (head)->cqh_last->field.cqe_next = (elm);                           \
    (head)->cqh_last = (elm);                                               \
} while (/*CONSTCOND*/0)

#define CIRCLEQ_REMOVE(head, elm, field) do {                               \
    if ((elm)->field.cqe_next == (void *)(head))                            \
        (head)->cqh_last = (elm)->field.cqe_prev;                           \
    else                                                                    \
        (elm)->field.cqe_next->field.cqe_prev = (elm)->field.cqe_prev;      \
    if ((elm)->field.cqe_prev == (void *)(head))                            \
        (head)->cqh_first = (elm)->field.cqe_next;                          \
    else                                                                    \
        (elm)->field.cqe_prev->field.cqe_next = (elm)->field.cqe_next;      \
} while (/*CONSTCOND*/0)

#define CIRCLEQ_FOREACH(var, head, field)                                   \
    for ((var) = ((head)->cqh_first);                                       \
        (var) != (const void *)(head);                                      \
        (var) = ((var)->field.cqe_next))

#define CIRCLEQ_FOREACH_REVERSE(var, head, field)                           \
    for ((var) = ((head)->cqh_last);                                        \
        (var) != (const void *)(head);                                      \
        (var) = ((var)->field.cqe_prev))

/*
 * Circular queue access methods.
 */
#define CIRCLEQ_EMPTY(head)         ((head)->cqh_first == (void *)(head))
#define CIRCLEQ_FIRST(head)         ((head)->cqh_first)
#define CIRCLEQ_LAST(head)          ((head)->cqh_last)
#define CIRCLEQ_NEXT(elm, field)    ((elm)->field.cqe_next)
#define CIRCLEQ_PREV(elm, field)    ((elm)->field.cqe_prev)

#define CIRCLEQ_LOOP_NEXT(head, elm, field)                                 \
    (((elm)->field.cqe_next == (void *)(head))                              \
        ? ((head)->cqh_first)                                               \
        : (elm->field.cqe_next))

#define CIRCLEQ_LOOP_PREV(head, elm, field)                                 \
    (((elm)->field.cqe_prev == (void *)(head))                              \
        ? ((head)->cqh_last)                                                \
        : (elm->field.cqe_prev))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105

七、queue源码

在Linux系统中的路径为:/usr/include/sys/queue.h
也可以通过如下网址查看:https://codebrowser.dev/glibc/glibc/misc/sys/queue.h.html
queue.h

/*
 * Copyright (c) 1991, 1993
 *        The Regents of the University of California.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *        @(#)queue.h        8.5 (Berkeley) 8/20/94
 */
#ifndef        _QUEUE_H_
#define        _QUEUE_H_
/*
 * This file defines five types of data structures: singly-linked lists,
 * lists, simple queues, tail queues, and circular queues.
 *
 * A singly-linked list is headed by a single forward pointer. The
 * elements are singly linked for minimum space and pointer manipulation
 * overhead at the expense of O(n) removal for arbitrary elements. New
 * elements can be added to the list after an existing element or at the
 * head of the list.  Elements being removed from the head of the list
 * should use the explicit macro for this purpose for optimum
 * efficiency. A singly-linked list may only be traversed in the forward
 * direction.  Singly-linked lists are ideal for applications with large
 * datasets and few or no removals or for implementing a LIFO queue.
 *
 * A list is headed by a single forward pointer (or an array of forward
 * pointers for a hash table header). The elements are doubly linked
 * so that an arbitrary element can be removed without a need to
 * traverse the list. New elements can be added to the list before
 * or after an existing element or at the head of the list. A list
 * may only be traversed in the forward direction.
 *
 * A simple queue is headed by a pair of pointers, one the head of the
 * list and the other to the tail of the list. The elements are singly
 * linked to save space, so elements can only be removed from the
 * head of the list. New elements can be added to the list after
 * an existing element, at the head of the list, or at the end of the
 * list. A simple queue may only be traversed in the forward direction.
 *
 * A tail queue is headed by a pair of pointers, one to the head of the
 * list and the other to the tail of the list. The elements are doubly
 * linked so that an arbitrary element can be removed without a need to
 * traverse the list. New elements can be added to the list before or
 * after an existing element, at the head of the list, or at the end of
 * the list. A tail queue may be traversed in either direction.
 *
 * A circle queue is headed by a pair of pointers, one to the head of the
 * list and the other to the tail of the list. The elements are doubly
 * linked so that an arbitrary element can be removed without a need to
 * traverse the list. New elements can be added to the list before or after
 * an existing element, at the head of the list, or at the end of the list.
 * A circle queue may be traversed in either direction, but has a more
 * complex end of list detection.
 *
 * For details on the use of these macros, see the queue(3) manual page.
 */
/*
 * List definitions.
 */
#define        LIST_HEAD(name, type)                                                \
struct name {                                                                \
        struct type *lh_first;        /* first element */                        \
}
#define        LIST_HEAD_INITIALIZER(head)                                        \
        { NULL }
#define        LIST_ENTRY(type)                                                \
struct {                                                                \
        struct type *le_next;        /* next element */                        \
        struct type **le_prev;        /* address of previous next element */        \
}
/*
 * List functions.
 */
#define        LIST_INIT(head) do {                                                \
        (head)->lh_first = NULL;                                        \
} while (/*CONSTCOND*/0)
#define        LIST_INSERT_AFTER(listelm, elm, field) do {                        \
        if (((elm)->field.le_next = (listelm)->field.le_next) != NULL)        \
                (listelm)->field.le_next->field.le_prev =                \
                    &(elm)->field.le_next;                                \
        (listelm)->field.le_next = (elm);                                \
        (elm)->field.le_prev = &(listelm)->field.le_next;                \
} while (/*CONSTCOND*/0)
#define        LIST_INSERT_BEFORE(listelm, elm, field) do {                        \
        (elm)->field.le_prev = (listelm)->field.le_prev;                \
        (elm)->field.le_next = (listelm);                                \
        *(listelm)->field.le_prev = (elm);                                \
        (listelm)->field.le_prev = &(elm)->field.le_next;                \
} while (/*CONSTCOND*/0)
#define        LIST_INSERT_HEAD(head, elm, field) do {                                \
        if (((elm)->field.le_next = (head)->lh_first) != NULL)                \
                (head)->lh_first->field.le_prev = &(elm)->field.le_next;\
        (head)->lh_first = (elm);                                        \
        (elm)->field.le_prev = &(head)->lh_first;                        \
} while (/*CONSTCOND*/0)
#define        LIST_REMOVE(elm, field) do {                                        \
        if ((elm)->field.le_next != NULL)                                \
                (elm)->field.le_next->field.le_prev =                         \
                    (elm)->field.le_prev;                                \
        *(elm)->field.le_prev = (elm)->field.le_next;                        \
} while (/*CONSTCOND*/0)
#define        LIST_FOREACH(var, head, field)                                        \
        for ((var) = ((head)->lh_first);                                \
                (var);                                                        \
                (var) = ((var)->field.le_next))
/*
 * List access methods.
 */
#define        LIST_EMPTY(head)                ((head)->lh_first == NULL)
#define        LIST_FIRST(head)                ((head)->lh_first)
#define        LIST_NEXT(elm, field)                ((elm)->field.le_next)
/*
 * Singly-linked List definitions.
 */
#define        SLIST_HEAD(name, type)                                                \
struct name {                                                                \
        struct type *slh_first;        /* first element */                        \
}
#define        SLIST_HEAD_INITIALIZER(head)                                        \
        { NULL }
#define        SLIST_ENTRY(type)                                                \
struct {                                                                \
        struct type *sle_next;        /* next element */                        \
}
/*
 * Singly-linked List functions.
 */
#define        SLIST_INIT(head) do {                                                \
        (head)->slh_first = NULL;                                        \
} while (/*CONSTCOND*/0)
#define        SLIST_INSERT_AFTER(slistelm, elm, field) do {                        \
        (elm)->field.sle_next = (slistelm)->field.sle_next;                \
        (slistelm)->field.sle_next = (elm);                                \
} while (/*CONSTCOND*/0)
#define        SLIST_INSERT_HEAD(head, elm, field) do {                        \
        (elm)->field.sle_next = (head)->slh_first;                        \
        (head)->slh_first = (elm);                                        \
} while (/*CONSTCOND*/0)
#define        SLIST_REMOVE_HEAD(head, field) do {                                \
        (head)->slh_first = (head)->slh_first->field.sle_next;                \
} while (/*CONSTCOND*/0)
#define        SLIST_REMOVE(head, elm, type, field) do {                        \
        if ((head)->slh_first == (elm)) {                                \
                SLIST_REMOVE_HEAD((head), field);                        \
        }                                                                \
        else {                                                                \
                struct type *curelm = (head)->slh_first;                \
                while(curelm->field.sle_next != (elm))                        \
                        curelm = curelm->field.sle_next;                \
                curelm->field.sle_next =                                \
                    curelm->field.sle_next->field.sle_next;                \
        }                                                                \
} while (/*CONSTCOND*/0)
#define        SLIST_FOREACH(var, head, field)                                        \
        for((var) = (head)->slh_first; (var); (var) = (var)->field.sle_next)
/*
 * Singly-linked List access methods.
 */
#define        SLIST_EMPTY(head)        ((head)->slh_first == NULL)
#define        SLIST_FIRST(head)        ((head)->slh_first)
#define        SLIST_NEXT(elm, field)        ((elm)->field.sle_next)
/*
 * Singly-linked Tail queue declarations.
 */
#define        STAILQ_HEAD(name, type)                                        \
struct name {                                                                \
        struct type *stqh_first;        /* first element */                        \
        struct type **stqh_last;        /* addr of last next element */                \
}
#define        STAILQ_HEAD_INITIALIZER(head)                                        \
        { NULL, &(head).stqh_first }
#define        STAILQ_ENTRY(type)                                                \
struct {                                                                \
        struct type *stqe_next;        /* next element */                        \
}
/*
 * Singly-linked Tail queue functions.
 */
#define        STAILQ_INIT(head) do {                                                \
        (head)->stqh_first = NULL;                                        \
        (head)->stqh_last = &(head)->stqh_first;                                \
} while (/*CONSTCOND*/0)
#define        STAILQ_INSERT_HEAD(head, elm, field) do {                        \
        if (((elm)->field.stqe_next = (head)->stqh_first) == NULL)        \
                (head)->stqh_last = &(elm)->field.stqe_next;                \
        (head)->stqh_first = (elm);                                        \
} while (/*CONSTCOND*/0)
#define        STAILQ_INSERT_TAIL(head, elm, field) do {                        \
        (elm)->field.stqe_next = NULL;                                        \
        *(head)->stqh_last = (elm);                                        \
        (head)->stqh_last = &(elm)->field.stqe_next;                        \
} while (/*CONSTCOND*/0)
#define        STAILQ_INSERT_AFTER(head, listelm, elm, field) do {                \
        if (((elm)->field.stqe_next = (listelm)->field.stqe_next) == NULL)\
                (head)->stqh_last = &(elm)->field.stqe_next;                \
        (listelm)->field.stqe_next = (elm);                                \
} while (/*CONSTCOND*/0)
#define        STAILQ_REMOVE_HEAD(head, field) do {                                \
        if (((head)->stqh_first = (head)->stqh_first->field.stqe_next) == NULL) \
                (head)->stqh_last = &(head)->stqh_first;                        \
} while (/*CONSTCOND*/0)
#define        STAILQ_REMOVE(head, elm, type, field) do {                        \
        if ((head)->stqh_first == (elm)) {                                \
                STAILQ_REMOVE_HEAD((head), field);                        \
        } else {                                                        \
                struct type *curelm = (head)->stqh_first;                \
                while (curelm->field.stqe_next != (elm))                        \
                        curelm = curelm->field.stqe_next;                \
                if ((curelm->field.stqe_next =                                \
                        curelm->field.stqe_next->field.stqe_next) == NULL) \
                            (head)->stqh_last = &(curelm)->field.stqe_next; \
        }                                                                \
} while (/*CONSTCOND*/0)
#define        STAILQ_FOREACH(var, head, field)                                \
        for ((var) = ((head)->stqh_first);                                \
                (var);                                                        \
                (var) = ((var)->field.stqe_next))
#define        STAILQ_CONCAT(head1, head2) do {                                \
        if (!STAILQ_EMPTY((head2))) {                                        \
                *(head1)->stqh_last = (head2)->stqh_first;                \
                (head1)->stqh_last = (head2)->stqh_last;                \
                STAILQ_INIT((head2));                                        \
        }                                                                \
} while (/*CONSTCOND*/0)
/*
 * Singly-linked Tail queue access methods.
 */
#define        STAILQ_EMPTY(head)        ((head)->stqh_first == NULL)
#define        STAILQ_FIRST(head)        ((head)->stqh_first)
#define        STAILQ_NEXT(elm, field)        ((elm)->field.stqe_next)
/*
 * Simple queue definitions.
 */
#define        SIMPLEQ_HEAD(name, type)                                        \
struct name {                                                                \
        struct type *sqh_first;        /* first element */                        \
        struct type **sqh_last;        /* addr of last next element */                \
}
#define        SIMPLEQ_HEAD_INITIALIZER(head)                                        \
        { NULL, &(head).sqh_first }
#define        SIMPLEQ_ENTRY(type)                                                \
struct {                                                                \
        struct type *sqe_next;        /* next element */                        \
}
/*
 * Simple queue functions.
 */
#define        SIMPLEQ_INIT(head) do {                                                \
        (head)->sqh_first = NULL;                                        \
        (head)->sqh_last = &(head)->sqh_first;                                \
} while (/*CONSTCOND*/0)
#define        SIMPLEQ_INSERT_HEAD(head, elm, field) do {                        \
        if (((elm)->field.sqe_next = (head)->sqh_first) == NULL)        \
                (head)->sqh_last = &(elm)->field.sqe_next;                \
        (head)->sqh_first = (elm);                                        \
} while (/*CONSTCOND*/0)
#define        SIMPLEQ_INSERT_TAIL(head, elm, field) do {                        \
        (elm)->field.sqe_next = NULL;                                        \
        *(head)->sqh_last = (elm);                                        \
        (head)->sqh_last = &(elm)->field.sqe_next;                        \
} while (/*CONSTCOND*/0)
#define        SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do {                \
        if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
                (head)->sqh_last = &(elm)->field.sqe_next;                \
        (listelm)->field.sqe_next = (elm);                                \
} while (/*CONSTCOND*/0)
#define        SIMPLEQ_REMOVE_HEAD(head, field) do {                                \
        if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \
                (head)->sqh_last = &(head)->sqh_first;                        \
} while (/*CONSTCOND*/0)
#define        SIMPLEQ_REMOVE(head, elm, type, field) do {                        \
        if ((head)->sqh_first == (elm)) {                                \
                SIMPLEQ_REMOVE_HEAD((head), field);                        \
        } else {                                                        \
                struct type *curelm = (head)->sqh_first;                \
                while (curelm->field.sqe_next != (elm))                        \
                        curelm = curelm->field.sqe_next;                \
                if ((curelm->field.sqe_next =                                \
                        curelm->field.sqe_next->field.sqe_next) == NULL) \
                            (head)->sqh_last = &(curelm)->field.sqe_next; \
        }                                                                \
} while (/*CONSTCOND*/0)
#define        SIMPLEQ_FOREACH(var, head, field)                                \
        for ((var) = ((head)->sqh_first);                                \
                (var);                                                        \
                (var) = ((var)->field.sqe_next))
/*
 * Simple queue access methods.
 */
#define        SIMPLEQ_EMPTY(head)                ((head)->sqh_first == NULL)
#define        SIMPLEQ_FIRST(head)                ((head)->sqh_first)
#define        SIMPLEQ_NEXT(elm, field)        ((elm)->field.sqe_next)
/*
 * Tail queue definitions.
 */
#define        _TAILQ_HEAD(name, type, qual)                                        \
struct name {                                                                \
        qual type *tqh_first;                /* first element */                \
        qual type *qual *tqh_last;        /* addr of last next element */        \
}
#define TAILQ_HEAD(name, type)        _TAILQ_HEAD(name, struct type,)
#define        TAILQ_HEAD_INITIALIZER(head)                                        \
        { NULL, &(head).tqh_first }
#define        _TAILQ_ENTRY(type, qual)                                        \
struct {                                                                \
        qual type *tqe_next;                /* next element */                \
        qual type *qual *tqe_prev;        /* address of previous next element */\
}
#define TAILQ_ENTRY(type)        _TAILQ_ENTRY(struct type,)
/*
 * Tail queue functions.
 */
#define        TAILQ_INIT(head) do {                                                \
        (head)->tqh_first = NULL;                                        \
        (head)->tqh_last = &(head)->tqh_first;                                \
} while (/*CONSTCOND*/0)
#define        TAILQ_INSERT_HEAD(head, elm, field) do {                        \
        if (((elm)->field.tqe_next = (head)->tqh_first) != NULL)        \
                (head)->tqh_first->field.tqe_prev =                        \
                    &(elm)->field.tqe_next;                                \
        else                                                                \
                (head)->tqh_last = &(elm)->field.tqe_next;                \
        (head)->tqh_first = (elm);                                        \
        (elm)->field.tqe_prev = &(head)->tqh_first;                        \
} while (/*CONSTCOND*/0)
#define        TAILQ_INSERT_TAIL(head, elm, field) do {                        \
        (elm)->field.tqe_next = NULL;                                        \
        (elm)->field.tqe_prev = (head)->tqh_last;                        \
        *(head)->tqh_last = (elm);                                        \
        (head)->tqh_last = &(elm)->field.tqe_next;                        \
} while (/*CONSTCOND*/0)
#define        TAILQ_INSERT_AFTER(head, listelm, elm, field) do {                \
        if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
                (elm)->field.tqe_next->field.tqe_prev =                 \
                    &(elm)->field.tqe_next;                                \
        else                                                                \
                (head)->tqh_last = &(elm)->field.tqe_next;                \
        (listelm)->field.tqe_next = (elm);                                \
        (elm)->field.tqe_prev = &(listelm)->field.tqe_next;                \
} while (/*CONSTCOND*/0)
#define        TAILQ_INSERT_BEFORE(listelm, elm, field) do {                        \
        (elm)->field.tqe_prev = (listelm)->field.tqe_prev;                \
        (elm)->field.tqe_next = (listelm);                                \
        *(listelm)->field.tqe_prev = (elm);                                \
        (listelm)->field.tqe_prev = &(elm)->field.tqe_next;                \
} while (/*CONSTCOND*/0)
#define        TAILQ_REMOVE(head, elm, field) do {                                \
        if (((elm)->field.tqe_next) != NULL)                                \
                (elm)->field.tqe_next->field.tqe_prev =                 \
                    (elm)->field.tqe_prev;                                \
        else                                                                \
                (head)->tqh_last = (elm)->field.tqe_prev;                \
        *(elm)->field.tqe_prev = (elm)->field.tqe_next;                        \
} while (/*CONSTCOND*/0)
#define        TAILQ_FOREACH(var, head, field)                                        \
        for ((var) = ((head)->tqh_first);                                \
                (var);                                                        \
                (var) = ((var)->field.tqe_next))
#define        TAILQ_FOREACH_REVERSE(var, head, headname, field)                \
        for ((var) = (*(((struct headname *)((head)->tqh_last))->tqh_last));        \
                (var);                                                        \
                (var) = (*(((struct headname *)((var)->field.tqe_prev))->tqh_last)))
#define        TAILQ_CONCAT(head1, head2, field) do {                                \
        if (!TAILQ_EMPTY(head2)) {                                        \
                *(head1)->tqh_last = (head2)->tqh_first;                \
                (head2)->tqh_first->field.tqe_prev = (head1)->tqh_last;        \
                (head1)->tqh_last = (head2)->tqh_last;                        \
                TAILQ_INIT((head2));                                        \
        }                                                                \
} while (/*CONSTCOND*/0)
/*
 * Tail queue access methods.
 */
#define        TAILQ_EMPTY(head)                ((head)->tqh_first == NULL)
#define        TAILQ_FIRST(head)                ((head)->tqh_first)
#define        TAILQ_NEXT(elm, field)                ((elm)->field.tqe_next)
#define        TAILQ_LAST(head, headname) \
        (*(((struct headname *)((head)->tqh_last))->tqh_last))
#define        TAILQ_PREV(elm, headname, field) \
        (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
/*
 * Circular queue definitions.
 */
#define        CIRCLEQ_HEAD(name, type)                                        \
struct name {                                                                \
        struct type *cqh_first;                /* first element */                \
        struct type *cqh_last;                /* last element */                \
}
#define        CIRCLEQ_HEAD_INITIALIZER(head)                                        \
        { (void *)&head, (void *)&head }
#define        CIRCLEQ_ENTRY(type)                                                \
struct {                                                                \
        struct type *cqe_next;                /* next element */                \
        struct type *cqe_prev;                /* previous element */                \
}
/*
 * Circular queue functions.
 */
#define        CIRCLEQ_INIT(head) do {                                                \
        (head)->cqh_first = (void *)(head);                                \
        (head)->cqh_last = (void *)(head);                                \
} while (/*CONSTCOND*/0)
#define        CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do {                \
        (elm)->field.cqe_next = (listelm)->field.cqe_next;                \
        (elm)->field.cqe_prev = (listelm);                                \
        if ((listelm)->field.cqe_next == (void *)(head))                \
                (head)->cqh_last = (elm);                                \
        else                                                                \
                (listelm)->field.cqe_next->field.cqe_prev = (elm);        \
        (listelm)->field.cqe_next = (elm);                                \
} while (/*CONSTCOND*/0)
#define        CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do {                \
        (elm)->field.cqe_next = (listelm);                                \
        (elm)->field.cqe_prev = (listelm)->field.cqe_prev;                \
        if ((listelm)->field.cqe_prev == (void *)(head))                \
                (head)->cqh_first = (elm);                                \
        else                                                                \
                (listelm)->field.cqe_prev->field.cqe_next = (elm);        \
        (listelm)->field.cqe_prev = (elm);                                \
} while (/*CONSTCOND*/0)
#define        CIRCLEQ_INSERT_HEAD(head, elm, field) do {                        \
        (elm)->field.cqe_next = (head)->cqh_first;                        \
        (elm)->field.cqe_prev = (void *)(head);                                \
        if ((head)->cqh_last == (void *)(head))                                \
                (head)->cqh_last = (elm);                                \
        else                                                                \
                (head)->cqh_first->field.cqe_prev = (elm);                \
        (head)->cqh_first = (elm);                                        \
} while (/*CONSTCOND*/0)
#define        CIRCLEQ_INSERT_TAIL(head, elm, field) do {                        \
        (elm)->field.cqe_next = (void *)(head);                                \
        (elm)->field.cqe_prev = (head)->cqh_last;                        \
        if ((head)->cqh_first == (void *)(head))                        \
                (head)->cqh_first = (elm);                                \
        else                                                                \
                (head)->cqh_last->field.cqe_next = (elm);                \
        (head)->cqh_last = (elm);                                        \
} while (/*CONSTCOND*/0)
#define        CIRCLEQ_REMOVE(head, elm, field) do {                                \
        if ((elm)->field.cqe_next == (void *)(head))                        \
                (head)->cqh_last = (elm)->field.cqe_prev;                \
        else                                                                \
                (elm)->field.cqe_next->field.cqe_prev =                        \
                    (elm)->field.cqe_prev;                                \
        if ((elm)->field.cqe_prev == (void *)(head))                        \
                (head)->cqh_first = (elm)->field.cqe_next;                \
        else                                                                \
                (elm)->field.cqe_prev->field.cqe_next =                        \
                    (elm)->field.cqe_next;                                \
} while (/*CONSTCOND*/0)
#define        CIRCLEQ_FOREACH(var, head, field)                                \
        for ((var) = ((head)->cqh_first);                                \
                (var) != (const void *)(head);                                \
                (var) = ((var)->field.cqe_next))
#define        CIRCLEQ_FOREACH_REVERSE(var, head, field)                        \
        for ((var) = ((head)->cqh_last);                                \
                (var) != (const void *)(head);                                \
                (var) = ((var)->field.cqe_prev))
/*
 * Circular queue access methods.
 */
#define        CIRCLEQ_EMPTY(head)                ((head)->cqh_first == (void *)(head))
#define        CIRCLEQ_FIRST(head)                ((head)->cqh_first)
#define        CIRCLEQ_LAST(head)                ((head)->cqh_last)
#define        CIRCLEQ_NEXT(elm, field)        ((elm)->field.cqe_next)
#define        CIRCLEQ_PREV(elm, field)        ((elm)->field.cqe_prev)
#define CIRCLEQ_LOOP_NEXT(head, elm, field)                                \
        (((elm)->field.cqe_next == (void *)(head))                        \
            ? ((head)->cqh_first)                                        \
            : (elm->field.cqe_next))
#define CIRCLEQ_LOOP_PREV(head, elm, field)                                \
        (((elm)->field.cqe_prev == (void *)(head))                        \
            ? ((head)->cqh_last)                                        \
            : (elm->field.cqe_prev))
#endif        /* sys/queue.h */
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
  • 273
  • 274
  • 275
  • 276
  • 277
  • 278
  • 279
  • 280
  • 281
  • 282
  • 283
  • 284
  • 285
  • 286
  • 287
  • 288
  • 289
  • 290
  • 291
  • 292
  • 293
  • 294
  • 295
  • 296
  • 297
  • 298
  • 299
  • 300
  • 301
  • 302
  • 303
  • 304
  • 305
  • 306
  • 307
  • 308
  • 309
  • 310
  • 311
  • 312
  • 313
  • 314
  • 315
  • 316
  • 317
  • 318
  • 319
  • 320
  • 321
  • 322
  • 323
  • 324
  • 325
  • 326
  • 327
  • 328
  • 329
  • 330
  • 331
  • 332
  • 333
  • 334
  • 335
  • 336
  • 337
  • 338
  • 339
  • 340
  • 341
  • 342
  • 343
  • 344
  • 345
  • 346
  • 347
  • 348
  • 349
  • 350
  • 351
  • 352
  • 353
  • 354
  • 355
  • 356
  • 357
  • 358
  • 359
  • 360
  • 361
  • 362
  • 363
  • 364
  • 365
  • 366
  • 367
  • 368
  • 369
  • 370
  • 371
  • 372
  • 373
  • 374
  • 375
  • 376
  • 377
  • 378
  • 379
  • 380
  • 381
  • 382
  • 383
  • 384
  • 385
  • 386
  • 387
  • 388
  • 389
  • 390
  • 391
  • 392
  • 393
  • 394
  • 395
  • 396
  • 397
  • 398
  • 399
  • 400
  • 401
  • 402
  • 403
  • 404
  • 405
  • 406
  • 407
  • 408
  • 409
  • 410
  • 411
  • 412
  • 413
  • 414
  • 415
  • 416
  • 417
  • 418
  • 419
  • 420
  • 421
  • 422
  • 423
  • 424
  • 425
  • 426
  • 427
  • 428
  • 429
  • 430
  • 431
  • 432
  • 433
  • 434
  • 435
  • 436
  • 437
  • 438
  • 439
  • 440
  • 441
  • 442
  • 443
  • 444
  • 445
  • 446
  • 447
  • 448
  • 449
  • 450
  • 451
  • 452
  • 453
  • 454
  • 455
  • 456
  • 457
  • 458
  • 459
  • 460
  • 461
  • 462
  • 463
  • 464
  • 465
  • 466
  • 467
  • 468
  • 469
  • 470
  • 471
  • 472
  • 473
  • 474
  • 475
  • 476
  • 477
  • 478
  • 479
  • 480
  • 481
  • 482
  • 483
  • 484
  • 485
  • 486
  • 487
  • 488
  • 489
  • 490
  • 491
  • 492
  • 493
  • 494
  • 495
  • 496

参考

  1. https://www.codeleading.com/article/52881355491/
  2. https://blog.csdn.net/tissar/article/details/86978743
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/2023面试高手/article/detail/181592
推荐阅读
相关标签
  

闽ICP备14008679号