赞
踩
卷积层+pooling层
- #定义变量,初始化为截断正态分布的变量
- def weight_variable(shape):
- initial = tf.truncated_normal(shape, stddev=0.1)
- return tf.Variable(initial)
-
- #定义变量,初始化为常量
- def bias_variable(shape):
- initial = tf.constant(0.1, shape=shape)
- return tf.Variable(initial)
-
- # W为核函数,strides为步长,strides=[1, 1, 1, 1],中间两个为x方向的步长和y方向的步长
- # padding='SAME'表示输出的大小和输入的大小一样
- def conv2d(x, W):
- # stride [1, x_movement, y_movement, 1]
- # Must have strides[0] = strides[3] = 1
- return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
-
- #2x2的pooling,虽然这里padding也是same,但是下采样了。
- def max_pool_2x2(x):
- # stride [1, x_movement, y_movement, 1]
- return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
-
- #定义卷积核的值,设置初始值。其中[5,5, 1,32]为卷积核的shape
- W_conv1 = weight_variable([5,5, 1,32]) # patch 5x5, in size 1, out size 32
- b_conv1 = bias_variable([32])
- h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) # output size 28x28x32
- h_pool1 = max_pool_2x2(h_conv1)
原始代码如下
- # View more python tutorial on my Youtube and Youku channel!!!
-
- # Youtube video tutorial: https://www.youtube.com/channel/UCdyjiB5H8Pu7aDTNVXTTpcg
- # Youku video tutorial: http://i.youku.com/pythontutorial
-
- """
- Please note, this code is only for python 3+. If you are using python 2+, please modify the code accordingly.
- """
- from __future__ import print_function
- import tensorflow as tf
- from tensorflow.examples.tutorials.mnist import input_data
- # number 1 to 10 data
- mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
-
- def compute_accuracy(v_xs, v_ys):
- global prediction
- y_pre = sess.run(prediction, feed_dict={xs: v_xs, keep_prob: 1})
- correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_ys,1))
- accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
- result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys, keep_prob: 1})
- return result
-
- def weight_variable(shape):
- initial = tf.truncated_normal(shape, stddev=0.1)
- return tf.Variable(initial)
-
- def bias_variable(shape):
- initial = tf.constant(0.1, shape=shape)
- return tf.Variable(initial)
-
- def conv2d(x, W):
- # stride [1, x_movement, y_movement, 1]
- # Must have strides[0] = strides[3] = 1
- return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
-
- def max_pool_2x2(x):
- # stride [1, x_movement, y_movement, 1]
- return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
-
- # define placeholder for inputs to network
- xs = tf.placeholder(tf.float32, [None, 784])/255. # 28x28
- ys = tf.placeholder(tf.float32, [None, 10])
- keep_prob = tf.placeholder(tf.float32)
-
- # print(x_image.shape) # [n_samples, 28,28,1]
-
- ## conv1 layer ##
- W_conv1 = weight_variable([5,5, 1,32]) # patch 5x5, in size 1, out size 32
- b_conv1 = bias_variable([32])
- h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) # output size 28x28x32
- h_pool1 = max_pool_2x2(h_conv1) # output size 14x14x32
-
- ## conv2 layer ##
- W_conv2 = weight_variable([5,5, 32, 64]) # patch 5x5, in size 32, out size 64
- b_conv2 = bias_variable([64])
- h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) # output size 14x14x64
- h_pool2 = max_pool_2x2(h_conv2) # output size 7x7x64
-
- ## fc1 layer ##
- W_fc1 = weight_variable([7*7*64, 1024])
- b_fc1 = bias_variable([1024])
- # [n_samples, 7, 7, 64] ->> [n_samples, 7*7*64]
- h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
- h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
- h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
-
- ## fc2 layer ##
- W_fc2 = weight_variable([1024, 10])
- b_fc2 = bias_variable([10])
- prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
-
-
- # the error between prediction and real data
- cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),
- reduction_indices=[1])) # loss
- train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
-
- sess = tf.Session()
- # important step
- # tf.initialize_all_variables() no long valid from
- # 2017-03-02 if using tensorflow >= 0.12
- if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1:
- init = tf.initialize_all_variables()
- else:
- init = tf.global_variables_initializer()
- sess.run(init)
-
- for i in range(1000):
- batch_xs, batch_ys = mnist.train.next_batch(100)
- sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys, keep_prob: 0.5})
- if i % 50 == 0:
- print(compute_accuracy(
- mnist.test.images, mnist.test.labels))
从红色部分可推断:神经网络输入层的个数是由输入的图片的像素个数,对组成的指定的矩阵(如上面xs = tf.placeholder(tf.float32, [None, 784])/255. # 28x28所示),对该矩阵进行指定像素大小的图片分割(28*28)得到矩阵,x_image = tf.reshape(xs, [-1, 28, 28, 1]),该矩阵与W_conv1连接的反推,可与确定输入层神经元个数相关,需要进一步实验解决h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) # output size 28x28x32
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。