赞
踩
LLM大模型:
GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF
GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案
随着OpenAI的GPT-4这样的大型语言模型(LLMs)已经风靡全球,现在让它们自动执行各种任务,如回答问题、翻译语言、分析文本等。LLMs是在交互上真正体验到像“人工智能”。
如何管理这些LLM呢?
LangChain在这方面发挥重要作用。
LangChain使构建由LLMs驱动的应用程序变得简单,使用LangChain,可以在统一的界面中轻松与不同类型的LLMs进行交互,管理模型版本,管理对话版本,并将LLMs连接在一起。
from langchain.llms import OpenAI
llm = OpenAI(openai_api_key="...")
LangChain的关键组件
LangChain的优势是它灵活且模块化,可以将语言处理分解为单独的部分,让开发者创建自定义工作流程。以下是它的关键部分:
组件和链:执行语言处理特定任务的模块。链将这些组件连接起来,形成自定义工作流程
提示模板:可重复使用的提示,可以更改其中的特定值。例如,一个询问用户姓名的提示可以被个性化
向量存储:通过文档的数字意义来保存和搜索信息
索引和检索器:存储和查找有关模型训练数据的详细信息,以获得更好的响应
输出解析器:管理和精炼模型的响应,使其更有结构
示例选择器:从模型的训练数据中选择正确的例子,提高响应准确性
代理:具有特定任务的唯一实例,如聊天机器人或移动应用程序
构建LangChain的应用程序
LangChain的LLM类可以连接到不同的模型提供商,如OpenAI和Hugging Face。可以轻松使用LangChain构建一个带有提示的应用程序,并得到输出。例如:
import os
from langchain.llms import OpenAI
llm = OpenAI(model_name="gpt-3.5-turbo",
openai_api_key=os.environ["OPENAI_API_KEY"])
print(llm("Tell me a joke about pizza!"))
这可能会得到类似这样的输出:
Why did the pizza maker go to art school?
Because they wanted to get a "pizza" the creative action!
Hahahaha….. so funny Mr. gpt-3.5-turbo….
如果想要切换模型,只需简单更改代码。
LangChain管理Prompt
在LangChain中的PromptTemplate通过使用模板生成提示,帮助生成提示。可以在保持主结构的同时轻松更改值。例如:
from langchain.llms import OpenAI
from langchain import PromptTemplate
import os
USER_INPUT = "chocolate cake"
llm = OpenAI(model_name="gpt-3.5-turbo",
openai_api_key=os.environ["OPENAI_API_KEY"])
template = """I'm interested in making {dish}. Can you provide me with a simple recipe for it, including the main ingredients and basic instructions?"""
prompt = PromptTemplate(input_variables=["dish"], template=template)
final_prompt = prompt.format(dish=USER_INPUT)
print(f"LLM Output: {llm(final_prompt)}")
这使得管理所有提示并处理动态输入变得非常容易。
结合LLMs和Prompt的工作流
在LangChain中进行链接意味着将LLMs与其他元素组合用于应用程序。可以:
例如:
from langchain.llms import OpenAI from langchain.chains import LLMChain, SimpleSequentialChain from langchain import PromptTemplate import os llm = OpenAI(model_name="gpt-3.5-turbo", openai_api_key=os.environ["OPENAI_API_KEY"]) # 第一步 template = "Can you provide a brief summary of the movie {movie_title}? Please keep it concise." first_prompt = PromptTemplate(input_variables=["movie_title"],template=template) chain_one = LLMChain(llm=llm, prompt=first_prompt) # 第二步 second_prompt = PromptTemplate(input_variables=["actor"], template="Can you list three movies featuring {actor}?") chain_two = LLMChain(llm=llm, prompt=second_prompt) # 结合第一和第二链 overall_chain = SimpleSequentialChain(chains=[chain_one, chain_two], verbose=True) final_answer = overall_chain.run("Inception")
此示例构建了一个两步链,用于查找有关电影的演员信息。
LangChain是一个Python框架,让我们可以使用LLMs构建应用程序。它与各种模型连接,使与LLM和提示管理有关的一切变得简单。
觉得有用 收藏 收藏 收藏
点个赞 点个赞 点个赞
End
GPT专栏文章:
GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案
GPT实战系列-LangChain + ChatGLM3构建天气查询助手
GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手
GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)
GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(一)
GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。