赞
踩
配置:
1.Nvidia 驱动正确安装过程
卸载掉原有驱动
sudo apt-get remove –purge nvidia*
如果使用的是 apt-get 安装可以使用这种方法卸载,如果使用的是 runfile,则使用--uninstall 命令,当然 runfile 安装的时候会卸载掉之前的驱动,所以可以不用手动去卸载。
禁用 nouveau
打开编辑配置文件:
sudo gedit /etc/modprobe.d/blacklist.conf
在最后一行添加:
blacklist nouveau
禁用 nouveau 第三方驱动,之后也不需要改回来
执行:
sudo update-initramfs -u
重启后执行:
lsmod | grep nouveau
没有输出即屏蔽好了
安装驱动
进入命令行界面 注:(Ctrl + Alt + F7 是回到桌面系统)
Ctrl-Alt+F1
给驱动 run 文件赋予执行权限
sudo chmod a+x NVIDIA-Linux-x86_64-390.48.run //获取权限
禁用 X(显卡)服务(至关重要)
执行:
sudo /etc/init.d/lightdm stop
安装(注意 参数)
sudo ./NVIDIA-Linux-x86_64-390.48.run --no-opengl-files
#注意,这里总是显示无效指令–no-opengl-files ,自己手打一遍就好
sudo /etc/init.d/lightdm start #开启显卡
后面两个参数可不加。
安装驱动的时候,有一布问你”Would you like to run the nvidia-xconfig utility to automatically update your X configuration file…”什么的,选择 No。
重启电脑,没有问题,输入命令:
nvidia-smi
2.安装 cuda(CUDA 是一种并行计算的模型,能利用英伟达 GPU 的并行计算引擎)
下载好 CUDA Toolkit9.1 后,执行如下代码进行安装(此处不需要安装 OPGL),代码如下:
1 sudo sh cuda_9.0.176_384.81_linux.run --no-opengl-libs #run 文件的文件名根据自己下的文件名修改,默认是我提供的文件
输出显示:
这里先进入协议,可以按回车阅读,也可以直接 CTRL+C 退出
添加环境变量:
sudo gedit ~/.bashrc
export PATH=/usr/local/cuda-9.0/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda9.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
source ~/.bashrc
验证 CUDA9.0 是否安装成功
cd /usr/local/cuda-9.0/samples/1_Utilities/deviceQuery
sudo make
./deviceQuery
输出如下信息表示成功安装
./deviceQuery Starting...
CUDA Device Query (Runtime API) version (CUDART static linking)
Detected 1 CUDA Capable device(s)
Device 0: "GeForce GT 740M"
CUDA Driver Version / Runtime Version 9.0 / 9.0
CUDA Capability Major/Minor version number: 3.5
Total amount of global memory: 2004 MBytes (2100953088 bytes)
( 2) Multiprocessors, (192) CUDA Cores/MP: 384 CUDA Cores
GPU Max Clock rate: 1032 MHz (1.03 GHz)
Memory Clock rate: 800 Mhz
Memory Bus Width: 64-bit
L2 Cache Size: 524288 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)
Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers
3.安装 cudnn(NVIDIA 打造的针对深度神经网络的加速库)
执行如下步骤:
复制动态链接库
cd /usr/local/cuda/lib64/ sudo rm -rf libcudnn.so libcudnn.so.7
生成软衔接
sudo ln -s libcudnn.so.7.1.2 libcudnn.so.7
生成软链接 (麻蛋,这是个陷阱,自己吧自己坑了)
sudo ln -s libcudnn.so.7 libcudnn.so
执行完如上命令之后,cuDNN 就安装好了,这时我们可以发现在 /usr/local/cuda/include 目录下就多了 cudnn.h 头文件。
终端中执行 nvcc -V 显示如下信息则表示成功
nvcc -V
pertor@pertor-computer:~$ nvcc -V nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2017 NVIDIA Corporation
Built on Fri_Sep__1_21:08:03_CDT_2017
Cuda compilation tools, release 9.0, V9.0.176
4.安装 opencv3.4.1
安装之前需要安装 cmake
依赖:sudo apt-get install build-essential libgtk2.0-dev libavcodec-dev libavformat-dev libjpeg.dev libtiff4.dev libswscale-dev libjasper-dev
安装 cmake: sudo apt-get install cmake
1.下载 opencv
下载地址:https://github.com/opencv/opencv
2.下载之后解压安装包
解压:unzip opencv-3.4.1.zip
3.在当前目录下创建一个新文件夹用于编译 opencv
创建文件夹:mkdir opencv3.4_build
4.进入刚刚创建的文件夹里面
进入文件夹:cd opencv_build
5.编译 opencv ,进行 cmake
cmake ../opencv-3.4.1 -DWITH_GTK_2_X=ON -DCMAKE_INSTALL_PREFIX=/usr/local -DCMAKE_BUILD_TYPE=RELEASE -DCMAKE_INSTALL_PREFIX=/usr/local -DWITH_TBB=ON -DBUILD_NEW_PYTHON_SUPPORT=ON -DWITH_V4L=ON -DINSTALL_C_EXAMPLES=ON -DINSTALL_PYTHON_EXAMPLES=ON -DBUILD_EXAMPLES=ON -DWITH_OPENGL=ON -DENABLE_FAST_MATH=1 -DCUDA_FAST_MATH=1 -DWITH_CUBLAS=1 -DWITH_OPENMP=ON
cmake 成功之后进行编译
编译 opencv:make -j8
安装 opencv
安装:sudo make install
6.配置 FASTER-RCNN Caffe
安装相关依赖
sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler
sudo apt-get install --no-install-recommends libboost-all-dev
sudo apt-get install libopenblas-dev liblapack-dev libatlas-base-dev
sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev
pip install cython
pip install easydict
pip install python-opencv
1)拉取 faster rcnn 代码
git clone --recursive https://github.com/rbgirshick/py-faster-rcnn.git
2)cd 到 lib 目录,生成 cython
3)修改 Makefile.config 文件
进行 Makefile 和 Makefile.config 的修改
内容附上:
Makefile.config::
## Refer to http://caffe.berkeleyvision.org/installation.html # Contributions simplifying and improving our build system are welcome! # cuDNN acceleration switch (uncomment to build with cuDNN).
USE_CUDNN:=1
# CPU-only switch (uncomment to build without GPU support).
# CPU_ONLY := 1
# uncomment to disable IO dependencies and corresponding data layers
# USE_OPENCV := 0
# USE_LEVELDB := 0
# USE_LMDB := 0
# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
# You should not set this flag if you will be reading LMDBs with any
# possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1
# Uncomment if you're using OpenCV 3
OPENCV_VERSION := 3
# To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++
# CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr
# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.
# For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.
# For CUDA >= 9.0, comment the *_20 and *_21 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=sm_50 \
-gencode arch=compute_52,code=sm_52 \
-gencode arch=compute_60,code=sm_60 \
-gencode arch=compute_61,code=sm_61 \ -gencode arch=compute_61,code=compute_61
# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := atlas
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories. # Leave commented to accept the defaults for your choice of BLAS # (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas
# Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib
# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app
# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
PYTHON_INCLUDE := /usr/include/python2.7 \ /usr/lib/python2.7/dist-packages/numpy/core/include # Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
#ANACONDA_HOME := $(HOME)/anaconda2
#PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
# $(ANACONDA_HOME)/include/python2.7 \
# $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include\
LIBRARIES += glog gflags protobuf leveldb snappy \ lmdb boost_system hdf5_h1 hdf5 m\ opencv_core opencv_highhui opencv_imgproc opencv_imgcodes opencv_videoio
# Uncomment to use Python 3 (default is Python 2)
# PYTHON_LIBRARIES := boost_python3 python3.5m
# PYTHON_INCLUDE := /usr/include/python3.5m \
# /usr/lib/python3.5/dist-packages/numpy/core/include
# We need to be able to find libpythonX.X.so or .dylib.
PYTHON_LIB := /usr/lib
#PYTHON_LIB := $(ANACONDA_HOME)/lib
# Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib
# Uncomment to support layers written in Python (will link against Python libs)
WITH_PYTHON_LAYER := 1
# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial
# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib
# NCCL acceleration switch (uncomment to build with NCCL)
# https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)
# USE_NCCL := 1
# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1
# N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute
# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1
# The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := 0
# enable pretty build (comment to see full commands)
Q ?= @
(4) Makefile:
修改 makefile 文件 打开 makefile 文件,做如下修改: 将:
NVCCFLAGS +=-ccbin=$(CXX)-Xcompiler-fPIC $(COMMON_FLAGS)
替换为:
NVCCFLAGS += -D_FORCE_INLINES -ccbin=$(CXX) -Xcompiler -fPIC $(COMMON_FLAGS)
(5)编辑/usr/local/cuda/include/host_config.h
将其中的第 115 行注释掉: 将
# error-- unsupported GNU version! gcc versions later than 4.9 are not supported!
改为
//#error-- unsupported GNU version! gcc versions later than 4.9 are not supported!
(6)替换 cudnn 文件
1).将/py-faster-rcnn/caffe-fast-rcnn/include/caffe/util/cudnn.hpp 换成最新版的 caffe 里的 cudnn 的实现,即相应的 cudnn.hpp.
2).将/py-faster-rcnn/caffe-fast-rcnn/include/caffe/layer 里的,所有以 cudnn 开头的文件都替换成最新版的 caffe 里的相应的同名文件
3)将/py-faster-rcnn/caffe-fast-rcnn/src/caffe/layer 里的,所有以 cudnn 开头的文件都替换成最新版的 caffe 里的相应文件
(7)编译 pycaffe
BUG 汇总:
编译 opencv 时碰到如下是错误:
driver_api_multi.cpp:(.text._ZNK6WorkerclEi+0x893): undefined reference to `cuCtxPopCurrent_v2' CMakeFiles/example_gpu_driver_api_multi.dir/driver_api_multi.cpp.o: In function `main': driver_api_multi.cpp:(.text.startup.main+0x11c): undefined reference to `cuInit' driver_api_multi.cpp:(.text.startup.main+0x133): undefined reference to `cuDeviceGet' driver_api_multi.cpp:(.text.startup.main+0x14d): undefined reference to `cuCtxCreate_v2' driver_api_multi.cpp:(.text.startup.main+0x15d): undefined reference to `cuCtxPopCurrent_v2' driver_api_multi.cpp:(.text.startup.main+0x172): undefined reference to `cuDeviceGet' driver_api_multi.cpp:(.text.startup.main+0x18c): undefined reference to `cuCtxCreate_v2' driver_api_multi.cpp:(.text.startup.main+0x19c): undefined reference to `cuCtxPopCurrent_v2' collect2: error: ld returned 1 exit status samples/gpu/CMakeFiles/example_gpu_driver_api_multi.dir/build.make:125: recipe for target 'bin/example_gpu_driver_api_multi' failed make[2]: *** [bin/example_gpu_driver_api_multi] Error 1
CMakeFiles/Makefile2:39358: recipe for target 'samples/gpu/CMakeFiles/example_gpu_driver_api_multi.dir/all' failed make[1]: *** [samples/gpu/CMakeFiles/example_gpu_driver_api_multi.dir/all] Error 2 make[1]: *** Waiting for unfinished jobs....
原因是找不到 cuda 库,解决方式如下(红色为新添加)
/opencv3.41/samples/gpu/CMakeLists.txt
(大概54行左右)
foreach(sample_filename ${all_samples}) ocv_define_sample(tgt ${sample_filename} gpu) ocv_target_link_libraries(${tgt} ${OPENCV_LINKER_LIBS}${OPENCV_CUDA_SAMPLES_REQUIRED_DEPS}) if(HAVE_CUDA AND NOT ANDROID) ocv_target_link_libraries(${tgt} ${CUDA_CUDA_LIBRARY})
endif() if(HAVE_opencv_xfeatures2d) ocv_target_link_libraries(${tgt} opencv_xfeatures2d) endif()
Error 2 :
src/caffe/test/test_smooth_L1_loss_layer.cpp:11:35: fatal error: caffe/vision_layers.hpp: No such file or directory compilation terminated.
Makefile:563: recipe for target '.build_release/src/caffe/test/test_smooth_L1_loss_layer.o' failed make: *** [.build_release/src/caffe/test/test_smooth_L1_loss_layer.o] Error 1 make: *** Waiting for unfinished jobs....
src/caffe/test/test_smooth_L1_loss_layer.cpp:11:35: fatal error: caffe/vision_layers.hpp: No such file or directory
解决方法:
找到文件 /home/xmart/py-faster-rcnn/caffe-fast-rcnn/src/caffe/test/test_smooth_L1_loss_layer.cpp
删除第十一行
11 #include "caffe/vision_layers.hpp"
1)pip Import Error:cannot import name main
ImportError: No module named rpn.proposal_layer
原因可能是没有将faster-rcnn中的某些库包含到库中,打开~/.bashrc文件:
sudo gedit ~/.bashrc
export PYTHONPATH="$PYTHONPATH:/home/xmart/py-faster-rcnn/caffe-fast-rcnn/python:/home/xmart/py-faster-rcnn/lib
This programrequires version 3.3 of the Protocol Buffer runtime library
4)
.build_release/tools/caffe
.build_release/tools/caffe: error while loading shared libraries: libopencv_core.so.3.4: cannot open shared object file: No such file or directory
Makefile:514: recipe for target 'runtest' failed
make: *** [runtest] Error 127
sudo find / -name "libopencv_core.so.3.2*"
Then I got the result: /usr/local/lib/libopencv_core.so.3.2.
2. Create a file called /etc/ld.so.conf.d/opencv.conf and write to it the path to the folder where the binary is stored.For example, I wrote /usr/local/lib/ to my opencv.conf file.
3. Run the command line as follows.
sudo ldconfig -v
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。