赞
踩
参考:JVM 规范,Memories of a Java Runtime
「堆」:JVM 启动时按-Xmx, -Xms大小创建的内存区域,用于分配对象、数组所需内存,由 GC 管理和回收
「方法区」:存储被 JVM 加载的类信息(字段、成员方法的字节码指令等)、运行时常量池(字面量、符号引用等)、JIT 编译后的 Code Cache 等信息;JDK8 前 Hotspot 将方法区存储于永久代堆内存,之后参考 JRockit 废弃了永久代,存储于本地内存的 Metaspace 区
「直接内存」:JDK1.4 引入 NIO 使用 Native/Unsafe 库直接分配系统内存,使用 Buffer,Channel 与其交互,避免在系统内存与 JVM 堆内存之间拷贝的开销
「线程私有内存」:
程序计数器:记录当前线程待执行的下一条指令位置,上下文切换后恢复执行,由字节码解释器负责更新
JVM栈
描述 Java 方法执行的内存模型:执行新方法时创建栈帧,存储局部变量表、操作数栈等信息
存储单位:变量槽 slot,long, double占 2 个 slot,其他基本数据类型、引用类型占 1 个,故表的总长度在编译期可知
本地方法栈:执行本地 C/C++ 方法
创建对象
分配堆内存:类加载完毕后,其对象所需内存大小是确定的;堆内存由多线程共享,若并发创建对象都通过 CAS 乐观锁争夺内存,则效率低。故线程创建时在堆内存为其分配私有的分配缓冲区(TLAB:Thread Local Allocation Buffer)
内存模型
分配流程
注:当 TLAB 剩余空间不足以分配新对象,但又小于最大浪费空间阈值时,才会加锁创建新的 TLAB
零值初始化对象的堆内存、设置对象头信息、执行构造函数()V
「对象头」
Mark Word:记录对象的运行时信息,如 hashCode,GC 分代年龄,尾部 2 bit 用于标记锁状态
Class Pointer:指向所属的类信息
数组长度(可选,对象为数组):4 字节存储其长度
「对象数据」:各种字段的值,按宽度分类紧邻存储
「对齐填充」:内存对齐为 1 个字长整数倍,减少 CPU 总线周期
验证:openjdk/jol 检查对象内存布局
- public class User {
- private int age = -1;
- private String name = "unknown";
- }
-
- // java -jar ~/Downloads/jol-cli-latest.jar internals -cp . com.jol.User
- OFF SZ TYPE DESCRIPTION VALUE
- 0 8 (object header: mark) 0x0000000000000001 (non-biasable; age: 0)
- 8 4 (object header: class) 0xf8021e85 // User.class 引用地址
- 12 4 int User.age -1 // 基本类型则直接存储值
- 16 4 java.lang.String User.name (object) // 引用类型,指向运行时常量池中的 String 对象
- 20 4 (object alignment gap) // 有 4 字节的内存填充
- Instance size: 24 bytes
「堆内存」:-Xms
指定堆初始大小,当大量无法被回收的对象所占内存超出-Xmx
上限时,将发生内存溢出 OutOfMemoryError
排查:通过 Eclipse MAT 分析 -XX:+HeapDumpOnOutOfMemory生成的 *.hprof 堆转储文件,定位无法被回收的大对象,找出其 GC Root 引用路径
解决:若为内存泄露,则修改代码用null显式赋值、虚引用等方式及时回收大对象;若为内存溢出,大对象都是必须存活的,则调大-Xmx、减少大对象的生命周期、检查数据结构使用是否合理等
- // -Xms20m -Xmx20m -XX:+HeapDumpOnOutOfMemoryError
- public class HeapOOM {
- static class OOMObject {}
- public static void main(String[] args) {
- List<OOMObject> vs = new ArrayList<>();
- while (true)
- vs.add(new OOMObject());
- }
- }
分析 GC Root 发现com.ch02.HeapOOM对象间接引用了大量的OOMObject对象,共占用 15.4MB 堆内存,无法回收最终导致 OOM
「栈内存」:-Xss
指定栈大小,当栈深度超阈值(比如未触发终止条件的递归调用)、本地方法变量表过大等,都可能导致内存溢出 StackOverflowError
「方法区」:-XX:MetaspaceSize
指定元空间初始大小,-XX:MaxMetaspaceSize
指定最大大小,默认 -1 无限制,若在运行时动态生成大量的类,则可能触发 OOM
「运行时常量池」:strObj.intern()
动态地将首次出现的字符串对象放入字符串常量池并返回,JDK7 前会拷贝到永久代,之后则直接引用堆对象
- String s1 = "java"; // 类加载时,从字节码常量池中拷贝符号到了运行时常量池,在解析阶段初始化的字符串对象
- String s2 = "j";
- String s3 = s2 + "ava"; // 堆上动态分配的字符串对象
- println(s3 == s1); // false
- println(s3.intern() == s1); // true // 已在字符串常量池中存在
「直接内存」:-XX:MaxDirectMemorySize
指定大小,默认与-Xmx
一样大,不被 GC 管理,申请内存超阈值时 OOM
GC 可分解为 3 个子问题:which(哪些内存可被回收)、when(什么时候回收)、how(如何回收)
「1. 引用计数算法(reference counting)」
原理:每个对象都维护一个引用计数器rc,当通过赋值、传参等方式引用它时rc++,当引用变量修改指向、离开函数作用域等方式解除引用时rc--,递减到 0 时说明对象无法再被使用,可回收。伪代码:
- assign(var, obj):
- incr_ref(obj) # self = self # 先增再减,避免引用自身导致内存提前释放
- decr_ref(var)
- var = obj
-
- incr(obj):
- obj.rc++
-
- decr(obj):
- obj.rc--
- if obj.rc == 0:
- remove_ref(obj) # 断开 obj 与其他对象的引用关系
- gc(obj) # 回收 obj 内存
优点:思路简单,对象无用即回收,延迟低,适合内存少的场景
缺点:此算法中对象是孤立的,无法在全局视角检查对象的真实有效性,循环引用的双方对象需引入外部机制来检测和回收,如下图红色圈(图源:what-is-garbage-collection)
「2. 可达性分析算法(reachability analysis)」
原理:从肯定不会被回收的对象(GC Roots)出发,向外搜索全局对象图,不可达的对象即无法再被使用,可回收;常见可作为 GC Root 的对象有:
执行上下文:JVM 栈中参数、局部变量、临时变量等引用的堆对象
全局引用:方法区中类的静态引用、常量引用(如 StringTable 中的字符串对象)所指向的对象
优点:无需对象维护 GC 元信息,开销小;单次扫描即可批量识别、回收对象,吞吐高
缺点:多线程环境下对象间的引用关系随时在变化,为保证 GC Root 标记的准确性,需在不变化的 snapshot 中进行,会产生 Stop The World(以下简称 STW) 卡顿现象
「3. 四种引用类型」
示例:限制堆內存 50MB,其中新生代 30MB,老年代 20MB;依次分配 5 次 10MB 的byte[]对象,仅使用软引用来引用,观察 GC 过程
- public static void main(String[] args) {
- // softRefList --> SoftReference --> 10MB byte[]
- List<SoftReference<byte[]>> softRefList = new ArrayList<>();
- ReferenceQueue<byte[]> softRefQueue = new ReferenceQueue<>(); // 无效引用队列
- for (int i = 0; i < 5; i++) {
- SoftReference<byte[]> softRef = new SoftReference<>(new byte[10*1024*1024], softRefQueue);
- softRefList.add(softRef);
-
- for (SoftReference<byte[]> ref : softRefList) // dump 所有软引用指向的对象,检查是否已被回收
- System.out.print(ref.get() == null ? "gced " : "ok ");
- System.out.println();
- }
- Reference<? extends byte[]> ref = softRefQueue.poll();
- while (ref != null) {
- softRefList.remove(ref); // 解除对软引用对象本身的引用
- ref = softRefQueue.poll();
- }
- System.out.println("effective soft ref: " + softRefList.size()); // 2
- }
-
- // java -verbose:gc -XX:NewSize=30m -Xms50m -Xmx50m -XX:+PrintGCDetails com.ch02.DemoRef
- ok
- ok ok
- // 分配第三个 []byte 时,Eden GC 无效,触发 Full GC 将一个 []byte 晋升到老年区
- // 此时三个 byte[] 都只被软引用所引用,被标记为待二次回收(若为弱引用,此时 Eden 已被回收)
- [GC (Allocation Failure) --[PSYoungGen: 21893K->21893K(27136K)] 21893K->32141K(47616K), 0.0046324 secs]
- [Full GC (Ergonomics) [PSYoungGen: 21893K->10527K(27136K)] [ParOldGen: 10248K->10240K(20480K)] 32141K->20767K(47616K), [Metaspace: 2784K->2784K(1056768K)], 0.004 secs]
- ok ok ok
- // 再次 GC,前三个 byte[] 全部被回收
- [GC (Allocation Failure) --[PSYoungGen: 20767K->20767K(27136K)] 31007K->31007K(47616K), 0.0007963 secs]
- [Full GC (Ergonomics) [PSYoungGen: 20767K->20759K(27136K)] [ParOldGen: 10240K->10240K(20480K)] 31007K->30999K(47616K), [Metaspace: 2784K->2784K(1056768K)], 0.003 secs]
- [GC (Allocation Failure) --[PSYoungGen: 20759K->20759K(27136K)] 30999K->30999K(47616K), 0.0007111 secs]
- [Full GC (Allocation Failure) [PSYoungGen: 20759K->0K(27136K)] [ParOldGen: 10240K->267K(20480K)] 30999K->267K(47616K), [Metaspace: 2784K->2784K(1056768K)], 0.003 secs]
- gced gced gced ok
- gced gced gced ok ok
「4. finalize」
原理:若对象不可达,被标记为可回收后,会进行finalize()
是否被重写、是否已执行过等条件筛选,若通过则对象会被放入 F-Queue 队列,等待低优先级的后台 Finalizer 线程触发其finallize()
的执行(不保证执行结束),对象可在finalize
中建立与 GC Root 对象图上任一节点的引用关系,来逃脱 GC
使用:finalize 机制与 C++ 中的析构函数并不等价,其执行结果并不确定,不推荐使用,可用try-finally替代
「分代收集理论」
两个分代假说:符合大多数程序运行的实际情况
弱分代假说:绝大多数对象是朝生夕灭,生存时间极短
强分代假说:熬过越多次 GC 的对象,越可能被继续使用,越难以回收
对应地,JVM 堆被划分为 2 个不同区域,将对象按年龄分类,兼顾了 GC 耗时与内存利用率
新生代:大量对象将被回收,只关注「仍存活」的对象,逐步晋升
老年代:大量对象不被回收,只关注「要被回收的」对象
跨代引用
问题:老年代会引用新生代,新生代 GC 时需遍历老年代中大量的存活对象,分析可达性,时间复杂度高
背景:相互引用的对象倾向于同时存亡,比如跨代引用关系中的新生代必然会逐步晋升,最终消除跨代关系
假说:跨代引用相比同代引用只占极少数,无需全量扫描老年代
实现:新生代维护全局数据结构:记忆集(Remembered Set),将老年代分为多个子块,标记存在跨代引用的子块,等待后续扫描;代价:为保证记忆集的正确性,需在跨代引用建立或断开时保持同步
「1. 标记清除:Mark-Sweep」
原理:标记不可达对象,统一清理回收,反之亦可
缺点:执行效率不稳定,回收耗时取决于活跃对象的数量;内存碎片多,会出现内存充足但无法分配过大的连续内存(数组)
「2. 标记复制:Mark-Copy」
理论:将堆内存切为两等份 A, B,每次仅使用 A,用完后标记存活对象复制到 B,清空 A 后执行 swap
优点:直接针对半区回收,无内存碎片问题;分配内存只需移动堆顶指针,高效顺序分配
缺点:当 A 区有大量存活对象时,复制开销大;B 区长时间闲置,内存浪费严重
实践:对于存活对象少的新生代,无需按 1:1 分配,而是按 8:1:1 的内存布局,其中 Eden 和 From 区同时使用,只有 To 区会被闲置(担保机制:若 To 区不够容纳 Minor GC 后的存活对象,则晋升到老年区)
「3. 标记整理:Mark-Compact」
原理:标记存活对象后统一移动到内存空间一侧,再回收边界之外的内存
优点:内存模型简单,无内存碎片,降低内存分配和访问的时间成本,能提高吞吐
缺点:对象移动需 STW 同步更新引用关系,会增加延迟
「1. 发起 GC:安全点与安全区域」
问题:为保证可达性分析结果的准确性,需挂起用户线程(STW),再从各线程的执行上下文中收集 GC Root,如何通知线程挂起?
安全点:HotSpot 内部有线程中断标记;在各线程的方法调用、循环跳转、异常跳转等会长时间执行的指令处,额外插入检查该标记的test高效指令;若轮询发现标记为真,线程会主动在最近的 SafePoint 处挂起,此时其栈上对象的引用关系不再变化,可收集 GC Root 对象
安全区域:引用关系不会变化的指令区域,可安全地收集 GC Root;线程离开此区域时,若 GC Root 收集过程还未结束,则需等待
示意图
「2. 加速 GC:CardTable」问题:非收集区域(老年代)会存在到收集区域(新生代)的跨代引用,如何避免对前者的全量扫描?
卡表:记忆集的字节数组实现;将老年代内存划分为 Card Page(512KB)大小的子内存块,若新建跨代引用,则将对应的 Card 标记为 dirty,GC 时只需扫描老年代中被标记为 dirty 的子内存块
写屏障:有别于volatile禁用指令重排的内存屏障,GC 中的写屏障是在对象引用更新时执行额外 hook 动作的机制。简单实现:
- void oop_field_store(oop* field, oop new_val) { // oop: ordinary object pointer
- // pre_write_barrier(field, new_val); // 写前屏障:更新前先执行,使用 oop 旧状态
- *field = new_val;
- post_write_barrier(field, new_val); // 写后屏障:更新完才执行
- }
使用写屏障保证 CardTable 的实时更新(图源:The JVM Write Barrier - Card Marking)
「3. 正确 GC:并发可达性分析」参考演讲:Shenandoah: The Garbage Collector That Could by Aleksey Shipilev
问题:GC Roots 的对象源固定,故枚举时 STW 时间短暂且可控。但后续可达性分析的时间复杂度与堆中对象数量成正相关,即堆中对象越多,对象图越复杂,堆变大后 STW 时间不可接受
解决:并发标记。引出新问题:用户线程动态建立、解除引用,标记过程中图结构发生变化,结果不可靠;证明:用三色法描述对象状态
白色:未被回收器访问过的对象;分析开始都是白色,分析结束还是白色则不可达
灰色:被回收器访问过,但其上至少还有 1 个引用未被扫描(中间态)
黑色:被回收器访问过,其上引用全部都已被扫描,存在引用链,为存活对象;若其他对象引用了黑色对象,则不必再扫描,肯定也存活;黑色不可能直接引用白色
STW 无并发的正确标记:顶部 3 个对象将被回收
用户线程并发修改引用,会导致标记结果无效,分 2 种情况:
少回收,对象标记为存活,但用户解除了引用:产生浮动垃圾,可接受,等待下次 GC
误回收,对象标记为可回收,但用户新建了引用:实际存活对象被回收,内存错误
论文《Uniprocessor Garbage Collection Techniques - Paul R. Wilson》§3.2 证明了「实际存活的对象被标记为可回收」必须同时满足两个条件(有时间序)
插入一条或多条从黑色到白色的新引用
删除所有灰色到该白色的直接、间接引用
为正确实现标记,打破其中一个条件即可(类比打破死锁四个条件之一的思想),分别对应两种方案:
增量更新 Increment Update:记录黑到白的引用关系,并发标记结束后,以黑为根,重新扫描;A 直接存活
原始快照 SATB(Snapshot At The Begining):记录灰到白的解引用关系,并发标记结束后,以灰为根,重新扫描;B 为灰色,最后变为黑色,存活。需注意,若没有步骤 3,则 B,C 变为浮动垃圾
搭配使用示意图:
「1. Serial, SerialOld」
原理:内存不足触发 GC 后会暂停所有用户线程,单线程地在新生代中标记复制,在老年代中标记整理,收集完毕后恢复用户线程
优点:全程 STW 简单高效
缺点:STW 时长与堆对象数量成正相关,且 GC 线程只能用到 1 core 无法加速
场景:单核 CPU 且可用内存少(如百兆级),JDK1.3 之前的唯一选择
「2. ParNew」
原理:多线程并行版的 Serial 实现,能有效减少 STW 时长;线程数默认与核数相同,可配置
场景:JDK7 之前搭配老年代的 CMS 回收器使用
「3. Parallel, Parallel Old」
垃圾回收有两个通常不可兼得的目标
低延迟:STW 时长短,响应快;允许高频、短暂 GC,比如调小新生代空间,加快收集延迟(吞吐下降)
高吞吐量:用户线程耗时 /(用户线程耗时 + GC 线程耗时)高,GC 总时间低;允许低频、单次长时间 GC,(延迟增加)
原理:与 ParNew 类似都是并行回收,主要增加了 3 个选项(倾向于提高吞吐量)
-XX:MaxGCPauseTime
:控制最大延迟
-XX:GCTimeRatio
:控制吞吐(默认 99%)
-XX:+UseAdaptiveSizePolicy
:启用自适应策略,自动调整 Eden 与 2 个 Survivor 区的内存占比-XX:SurvivorRatio
,老年代晋升阈值 -XX:PretenureSizeThreshold
「4. CMS」
CMS:Concurrent Mark Sweep,即并发标记清除,主要有 4 个阶段
初始标记(initial mark):STW 快速收集 GC Roots
并发标记(concurrent mark):从 GC Roots 出发检测引用链,标记可回收对象;与用户线程并发执行,通过增量更新来避免误回收
重新标记(remark):STW 重新分析被增量更新所收集的 GC Roots
并发清除(concurrent sweep):并发清除可回收对象
优点:两次 STW 时间相比并发标记耗时要短得多,相比前三种收集器,延迟大幅降低
缺点
CPU 敏感:若核数较少(< 4core),并发标记将占用大量 CPU 时间,会导致吞吐突降
无法处理浮动垃圾:-XX:CMSInitiatingOccupancyFration(默认 92%)指定触发 CMS GC 的阈值;在并发标记、并发清理的同时,用户线程会产生浮动垃圾(引用可回收对象、产生新对象),若浮动垃圾占比超过-XX:CMSInitiatingOccupancyFration;若 GC 的同时产生过多的浮动垃圾,导致老年代内存不足,会出现 CMS 并发失败,退化为 Serial Old 执行 Full GC,会导致延迟突增
无法避免内存碎片:-XX:CMSFullGCsBeforeCompaction(默认 0)指定每次在 Full GC 前,先整理老年代的内存碎片
「5. G1」
特点:基于 region 内存布局实现局部回收;GC 延迟目标可配置;无内存碎片问题
跨代引用:各 region 除了用卡表标记各卡页是否为 dirty 之外,还用哈希表记录了各卡页正在被哪些 region 引用,通过这种“双向指针”机制,能直接找到 Old 区,避免了全量扫描(G1 自身内存开销大头)
G1 GC 有 3 个阶段(参考其 GC 日志)
新生代 GC:Eden 区占比超阈值触发;标记存活对象并复制到 Survivor 区,其内可能有对象会晋升到 Old 区
老年代 GC:Old 区占比达到阈值后触发,执行标记整理
初始标记:枚举 GC Roots,已在新生代 GC 时顺带完成
并发标记:并发执行可达性分析,使用 SATB 记录引用变更
重新标记:SATB 分析,避免误回收
筛选回收:将 region 按回收价值和时间成本筛选组成回收集,STW 将存活对象拷贝到空 regions 后清理旧 regions,完成回收
混合 GC
参数控制(文档:HotSpot GC Tuning Guide)
使用 Serial 收集器 -XX:+UseG1GC
演示
「1. 对象优先分配在 Eden 区」
新对象在 Eden 区分配,空间不足则触发 Minor GC,存活对象拷贝到 To Survivor,若还是内存不足则通过分配担保机制转移到老年区,依旧不足才 OOM
- byte[] buf1 = new byte[6 * MB];
- byte[] buf2 = new byte[6 * MB]; // 10MB 的 eden 区剩余 4MB,空间不足,触发 minor GC
-
- // java -verbose:gc -Xms20m -Xmx20m -Xmn10m -XX:+PrintGCDetails -XX:+UseSerialGC com.ch03.Allocation
- // minor gc 后新生代内存从 6M 降到 0.2M,存活对象移到了老年区,总的堆内存用量依旧是 6MB
- [GC (Allocation Failure) [DefNew: 6823K->286K(9216K), 0.002 secs] 6823K->6430K(19456K), 0.002 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]
- Heap
- def new generation total 9216K, used 6513K
- eden space 8192K, 76% used // buf2
- from space 1024K, 28% used
- to space 1024K, 0% used
- tenured generation total 10240K, used 6144K
- the space 10240K, 60% used // buf1
「2. 大对象直接进入老年区」
对于 Serial, ParNew,可配置超过阈值 -XX:PretenureSizeThreshold
的大对象(连续内存),直接在老年代中分配,避免触发 minor gc,导致 Eden 和 Survivor 产生大量的内存复制操作
- byte[] buf1 = new byte[4 * MB];
-
- // java -verbose:gc -Xms20m -Xmx20m -Xmn10m -XX:+PrintGCDetails -XX:+UseSerialGC
- // -XX:PretenureSizeThreshold=3145728 com.ch03.Allocation // 3145728 即 3MB
- Heap
- def new generation total 9216K, used 843K
- eden space 8192K, 10% used
- from space 1024K, 0% used
- to space 1024K, 0% used
- tenured generation total 10240K, used 4096K
- the space 10240K, 40% used // buf1
「3. 长期存活的对象进入老年代」
对象头中 4bit 的 age 字段存储了对象当前 GC 分代年龄,当超过阈值-XX:MaxTenuringThreshold
(默认 15,也即 age 字段最大值)后,将晋升到老年代,可搭配-XX:+PrintTenuringDistribution
观察分代分布
- byte[] buf1 = new byte[MB / 16];
- byte[] buf2 = new byte[4 * MB];
- byte[] buf3 = new byte[4 * MB]; // 触发 minor gc
- buf3 = null;
- buf3 = new byte[4 * MB];
-
- // java -verbose:gc -Xms20m -Xmx20m -Xmn10m -XX:+PrintGCDetails -XX:+UseSerialGC
- // -XX:MaxTenuringThreshold=1 -XX:+PrintTenuringDistribution com.ch03.Allocation
- [GC (Allocation Failure) [DefNew
- Desired survivor size 524288 bytes, new threshold 1 (max 1)
- - age 1: 359280 bytes, 359280 total
- : 4839K->350K(9216K)] 4839K->4446K(19456K), 0.0017247 secs]
- // 至此,buf1 熬过了第一次收集,age=1
- [GC (Allocation Failure) [DefNew
- Desired survivor size 524288 bytes, new threshold 1 (max 1): 4446K->0K(9216K)] 8542K->4438K(19456K)]
- Heap
- def new generation total 9216K, used 4178K
- eden space 8192K, 51% used
- from space 1024K, 0% used // buf1 在第二轮收集中被提前晋升
- to space 1024K, 0% used
- tenured generation total 10240K, used 4438K
- the space 10240K, 43% used
「4. 分代年龄动态判定」
-XX:MaxTenuringThreshold
并非晋升的最低硬性门槛,当 Survivor 中同龄对象超 50% 后,大于等于该年龄的对象会被自动晋升,哪怕还没到阈值
「5. 空间分配担保」
老年代作为 To Survivor 区的担保区域,当 Eden + From Survivor 中存活对象的总大小超出 To Survivor 时,将尝试存入老年代。JDK6 之后,只要老年代的连续空间大于新生代对象的总大小,或之前晋升的平均大小,则只会进行 Minor GC,否则进行 Full GC
Class 文件实现语言无关性,JVM 实现平台无关性,参考《Java 虚拟机规范》
一个 Class 文件描述了一个类或接口的明确定义,文件内容是一组以 8 字节为单位的二进制流,各数据项间没有分隔符,超过 8 字节的数据项按 Big-Endian 切分后存储。数据项分两种:
无符号数:描述基本类型;用 u1,u2,u4,u8 分别表示 1,2,4,8 字节长度的无符号数;存储数字值、索引序号、UTF-8 编码值等
表:由无符号数、其他表嵌套构成的复合类型;约定 _info 后缀;存储字段类型、方法签名等
语法 参考文档:The class File Format
- ClassFile {
- u4 magic; // 魔数
- u2 minor_version; // 版本号
- u2 major_version;
- u2 constant_pool_count; // 常量池
- cp_info constant_pool[constant_pool_count-1];
- u2 access_flags; // 类访问标记
- u2 this_class; // 本类全限定名
- u2 super_class; // 单一父类
- u2 interfaces_count; // 多个接口
- u2 interfaces[interfaces_count];
- u2 fields_count; // 字段表
- field_info fields[fields_count];
- u2 methods_count; // 方法表
- method_info methods[methods_count];
- u2 attributes_count; // 类属性
- attribute_info attributes[attributes_count];
- }
magic:魔数,简单识别 *.class 文件,值固定为 0xCAFEBABE
minor_version, major_version:Class 文件的次、主版本号
constant_pool_count:常量池大小+1
constant_pool:常量池,索引从 1 开始,0 值被预留表示不引用任何常量池中的任何常量;常量分两类
字面量:如 UTF8 字符串、int、float、long、double 等数字常量
符号引用:类、接口的全限定名、字段名与描述符、方法类型与描述符等 现有常量共计 17 种,常量间除了都使用u1 tag前缀标识常量类型外,结构互不相同,常见的有:
CONSTANT_Utf8_info:保存由 UTF8 编码的字符串
- CONSTANT_Utf8_info {
- u1 tag; // 值为 1
- u2 length; // bytes 数组长度,u2 最大值 65535,即单个字符串字面量不超过 64KB
- u1 bytes[length]; // 长度不定的字节数组
- }
CONSTANT_Class_info:表示类或接口的符号引用
- CONSTANT_Class_info {
- u1 tag; // 值为 7
- u2 name_index; // 指向全限定类名的 Utf8_info // 常量间存在层级组合关系
- }
CONSTANT_Fieldref_info, CONSTANT_Methodref_info, CONSTANT_NameAndType_info:成员变量、成员方法及其类型描述符
- CONSTANT_Fieldref_info {
- u1 tag; // 值为 9
- u2 class_index; // 所属类
- u2 name_and_type_index; // 字段的名称、类型描述符
- }
- CONSTANT_Methodref_info {
- u1 tag; // 值为 10
- u2 class_index; // 所属类
- u2 name_and_type_index; // 方法的名称、签名描述符
- }
- CONSTANT_NameAndType_info {
- u1 tag; // 值为 12
- u2 name_index; // 字段或方法的名称
- u2 descriptor_index; // 类型描述符
- }
如上只列举了其中 5 种常量的结构,可见常量间通过组合的方式,来描述层级关系
access_flags:类的访问标记,有 16bit,每个标记对应一个位,比如ACC_PUBLIC对应0x0001,表示类被 public 修饰;其他 8 个标记参考 Opcodes.ACC_XXX
this_class, super_class:指向本类、唯一父类的 Class_info 符号常量
interface_count, interfaces:描述此类实现的多个接口信息
fields_count, fields:字段表;描述类字段、成员变量的个数及详细信息
- field_info {
- u2 access_flags; // 作用域、static,final,volatile 等访问标记
- u2 name_index; // 字段名
- u2 descriptor_index; // 类型描述符
- u2 attributes_count; // 字段的属性表
- attribute_info attributes[attributes_count];
- }
类型描述符简化描述了字段的数据类型、方法的参数列表及返回值,与 Java 中的类型对于关系如下:
基本类型:Z:boolean, B:byte, C:char, S:short, I:int, F:float, D:double, J:long
void 及引用类型:V:void
引用类型:L:_,类名中的 . 替换为 /,添加 ; 分隔符,如 Object 类描述为Ljava/lang/Object;
数组类型:每一维用一个前置 [ 表示 示例:boolean regionMatch(int, String, int, int)对应描述符为 (ILjava/lang/String;II)Z
methods_count, methods:方法表;完整描述各成员方法的修饰符、参数列表、返回值等签名信息
- method_info {
- u2 access_flags; // 访问标记
- u2 name_index; // 方法名
- u2 descriptor_index; // 方法描述符
- u2 attributes_count; // 方法属性表
- attribute_info attributes[attributes_count];
- }
字段表、方法表都可以带多个属性表,如常量字段表、方法字节码指令表、方法异常表等。属性模板:
- attribute_info {
- u2 attribute_name_index; // 属性名
- u4 attribute_length; // 属性数据长度
- u1 info[attribute_length]; // 其他字段,各属性的结构不同
- }
属性有 20+ 种,此处只记录常见的三种
Code 属性:存储方法编译后的字节码指令
- Code_attribute {
- u2 attribute_name_index; // 属性名,指向的 Utf8_info 值固定为 "Code"
- u4 attribute_length; // 剩下字节长度
- u2 max_stack; // 操作数栈最大深度,对于此方法的栈帧中操作数栈的深度
- u2 max_locals; // 以 slot 变量槽为单位的局部变量表大小,存储隐藏参数 this,实参列表,catch 参数,局部变量等
- u4 code_length; // 字节码指令总长度
- u1 code[code_length]; // JVM 指令集大小 200+,单个指令的编号用 u1 描述
- u2 exception_table_length; // 异常表,描述方法内各指令区间产生的异常及其 handler 地址
- { u2 start_pc; // catch_type 类型的异常,会在 [start_pc, end_pc) 指令范围内抛出
- u2 end_pc;
- u2 handler_pc; // 若抛出此异常,则 goto 到 handler_pc 处执行
- u2 catch_type;
- } exception_table[exception_table_length];
- u2 attributes_count; // Code 属性自己的属性
- attribute_info attributes[attributes_count];
- }
LineNumberTable 属性:记录 Java 源码行号与字节码行号的对应关系,用于抛异常时显示堆栈对应的行号等信息。可作为 Code 属性的子属性
- LineNumberTable_attribute {
- u2 attribute_name_index; u4 attribute_length;
- u2 line_number_table_length;
- { u2 start_pc; // 字节码指令区间开始位置
- u2 line_number; // 对应的源码行号
- } line_number_table[line_number_table_length];
- }
LocalVariableTable 属性:记录 Java 方法中局部变量的变量名,与栈帧局部变量表中的变量的对应关系,用于保留各方法有意义的变量名称
- LocalVariableTable_attribute {
- u2 attribute_name_index; u4 attribute_length;
- u2 local_variable_table_length;
- { u2 start_pc; // 局部变量生命周期开始的字节码偏移量
- u2 length; // 向后生命周期覆盖的字节码长度
- u2 name_index; // 变量名
- u2 descriptor_index; // 类型描述符
- u2 index; // 对应的局部变量表中的 slot 索引
- } local_variable_table[local_variable_table_length];
- }
其他属性直接参考 JVM 文档
示例 源码:com/cls/Structure.java
- package com.cls;
-
- public class Structure {
- public static void main(String[] args) {
- System.out.println("hello world");
- }
- }
javac -g:lines com/cls/Structure.java
编译后,参考 javap 反编译得到的正确结果,od -x --endian=big Structure.class
得出 class 文件内容的十六进制表示,解读如下:
- cafe babe # 1. u4 魔数,标识 class 文件类型
- 0000 0034 # 2. u2,u2 版本号,52 JDK8
-
- # 3. 常量池
- ---1---
- 001f # u2 constant_pool_count,31 项(从 1 开始计数,0 预留)
- 0a # u1 tag,10,Methoddef_info,成员方法结构
- 0006 # u2 index,6,所属类的 Class_info 在常量池中的编号 ## java/lang/Object
- 0011 # u2 index,17,此方法 NameAndType 编号 ## <init>:()V
-
- ---2---
- 09 # 9,Fileddef_info,成员变量结构
- 0012 # u2 index,18,所属类 Class_info 编号 ## java/lang/System
- 0013 # u2 index,19,此字段 NameAndType 编号 ## out:Ljava/io/PrintStream
-
- ---3---
- 08 # 8,String_info,字符串
- 0014 # u2 index,20,字面量编号 ## hello world
-
- ---4---
- 0a
- 0015 # 21 ## java/io/PrintStream
- 0016 # 22 ## println:(Ljava/lang/String;)V
-
- ---5---
- 07 # Class_info,全限定类名
- 0017 # u2 index,23,字面量编号 ## com/cls/Structure
-
- ---6---
- 07 # 7,Class_info,类引用
- 0018 # 24 ## java/lang/Object
-
- ---7---
- 01 # Utf8_info,UTF8 编码的字符串
- 0006 # u2 length,6,字符串长度
- 3c 69 6e 69 74 3e # 字面量值 ## "<init>"
-
- ---8-16---
- 01 0003 282956 ## "()V"
- 01 0004 436f6465 ## "Code"
- 01 000f 4c696e654e756d6265725461626c65 ## "LineNumberTable"
- 01 0004 6d61696e ## "main"
- 01 0016 285b4c6a6176612f6c616e672f537472696e673b2956 ## "([Ljava/lang/String;)V"
- 01 0010 4d6574686f64506172616d6574657273 ## "MethodParameters"
- 01 0004 61726773 ## "args"
- 01 000a 536f7572636546696c65 ## "SourceFile"
- 01 000e 5374727563747572652e6a617661 ## "Structure.java"
-
- ---17---
- 0c # 12,NameAndType,名字及类型描述符
- 0007 # u2 index,7,字段或方法名字面量编号 ## <init>
- 0008 # u2 index,8,字段或方法结构编号 ## ()V
-
- ---18---
- 07 0019 # 25 ## java/lang/System
-
- ---19---
- 0c
- 001a 001b # 26:27 ## out:Ljava/io/PrintStream;
-
- ---20---
- 01 000b 68656c6c6f20776f726c64 ## "hello world"
-
- ---21--
- 07 001c # 28 ## java/io/PrintStream
-
- ---22--
- 0c
- 001d 001e # 29:30 ## println:(Ljava/lang/String;)V
-
- ---23-31---
- 01 0011 636f6d2f636c732f537472756374757265 ## "com/cls/Structure"
- 01 0010 6a6176612f6c616e672f4f626a656374 ## "java/lang/Object "
- 01 0010 6a6176 612f 6c61 6e67 2f53 7973 7465 6d ## "java/lang/System"
- 01 0003 6f7574 ## "out"
- 01 0015 4c6a6176612f696f2f5072696e7453747265616d3b ## "Ljava/io/PrintStream;"
- 01 0013 6a6176612f696f2f5072696e7453747265616d ## "java/io/PrintStream"
- 01 0007 7072696e746c6e ## "println"
- 01 0015 284c6a6176612f6c616e672f537472696e673b2956 ## "(Ljava/lang/String;)V"
-
- 0021 # 4. u2,access_flags ## ACC_PUBLIC | ACC_SUPER
- 0005 # 5. u2, this_class,5 ## --5.Class_info--> com/cls/Structure
- 0006 # 6. u2, super_class, 6 ## --6.Class_info--> java/lang/Object
- 0000 # 7. u2, interface_count, 0
- 0000 # 8. u2, fields_count, 0
-
- 0002 # 9. methods count, 2
- # 方法一
- 0001 # u2, access_flags, ACC_PUBLIC
- 0007 # u2, name_index, 7 ## <init>
- 0008 # u2, descriptor_index, 8 ## ()V
- 0001 # u2, attribute_count, 1
- 0009 # u2, attribute_name_index, 9 ## Code 属性
- 0000 001d # u4, attribute_length, 30
- 0001 # u2, max_stack, 1
- 0001 # u2, max_locals, 1
- 0000 0005 # u4, code_array_length, 5
- 2a # u1, aload_0 ## 将第 0 个 slot 中的变量 this 入栈
- b7 0001 # u1, invokespecial ## 执行从 Object 继承的 <init>
- b1 # u1, return ## 返回 void
- 0000 # u2, exception_table_length, 0 ## exception table 为空,无异常
- 0001 # u2, attributes_count, 1 ## Code 属性本身的子属性
- 000a # 10 ## LineNumberTable 属性
- 0000 0006 # 6
- 0001 # u2, line_number_table_length, 1
- 0000 # u2, start_pc, 0
- 0003 # u2, line_number, 3
- # 方法二
- 0009 # access_flags ## ACC_PIBLIC | ACC_STATIC
- 000b # name_index, 11 ## main
- 000c # descriptor_index, 12 ## ([Ljava/lang/String;)V
- 0002 # attribute_count, 2
- 0009 # attribute_name_index, 9 ## Code
- 0000 0025 # attribute_length, 37
- 0002 # max_stack, 2
- 0001 # max_locals, 1
- 0000 0009 # code_array_length, 9
- b2 0002 # getstatic, 2 ## Field: java/lang/System.out:Ljava/io/PrintStream; // 加载静态对象变量
- 12 03 # ldc, 3 ## String: "hello world" // 将常量参数入栈
- b6 0004 # invokevirtual, 4 ## Method: java/io/PrintStream.println:(Ljava/lang/String;)V // 执行方法
- b1 # return
- 0000 # exception_table_length, 0
- 0001 # attributes_count, 1
- 000a # 10 ## LineNumberTable
- 0000 000a # 10
- 0002 # line_number_table_length, 2
- 0000 0005 # 0 -> 5
- 0008 0006 # 8 -> 6
JVM 面向操作数栈(operand stack)设计了指令集,每个指令由 1 字节的操作码(opcode)表示,其后跟随 0 个或多个操作数(operand),指令集列表参考 Java bytecode instruction listings
大部分与数据类型相关的指令,其操作码符号都会带类型前缀,如 i 前缀表示操作 int,剩余对应关系为 b:byte, c:char, s:short, f:float, d:double, l:long, a:reference
由于指令集大小有限(256个),故 boolean, byte, char, short 会被转为int运算
字节码可大致分为六类:
加载和存储指令:将变量从局部变量表 slot 加载到操作数栈的栈顶,反向则是存储
- // 将 slot 0,1,2,3,N 加载到栈顶,T 表示类型简记前缀,可取 i,l,f,d,a
- Tload_0, Tload_1, Tload_2, Tload_3, Tload n
- // 将栈顶数据写回指定的 slot
- Tstore_0, Tstore_1, Tstore_2, Tstore_3, Tstore n
- // 将不同范围的常量值加载到栈顶,由于 0~5 常量过于常用,有单独对应的指令,ldc 则加载普通常量
- bipush, sipush, Tconst_[0,1,2,3,4,5], aconst_null, ldc
运算指令
- Tadd, Tsub, Tmul, Tdiv, Trem // 算术运算:加减乘除,取余
- Tneg, Tor, Tand, Txor // 位运算:取反、或、与、异或
- dcmpg, dcmpl, fcmpg, fcmpl, lcmp // 比较运算:后缀 g 即 greater, l 即 less than
- iinc // 局部自增运算,与 iload 搭配使用
强制类型转换指令:窄化转换为 T 类型(长度为 N)时,会直接丢弃除了低 N 位外的其他位,可能会导致数据溢出、正负号不确定,浮点数转整型则会丢失精度
- i2b // int -> byte
- i2c, i2s; l2i, f2i, d2i; d2l, f2l; d2f
对象创建与访问指令:类实例、数组都是对象,存储结构不同,创建和访问指令有所区别
- new // 创建类实例
- newarray, annewarray, multianewarry // 创建基本类型数组、引用类型数组、多维引用类型数组
- getfield, putfield; getstatic, putstatic // 读写类实例字段;读写类静态字段
- Taload, Tastore; arraylength // 读写数组元素;计算数组长度
- instanceof; checkcast // 校验对象是否为类实例;执行强制转换
操作数栈管理指令
- pop, pop2 // 弹出栈顶 1,2 元素
- dup, dup2; swap // 复制栈顶 1,2 个元素并重新入栈;交换栈顶两个元素
控制转移指令:判断条件成立,则跳转到指定的指令行(修改 PC 指向)
- if_<icmpeq,icmpne;icmplt,icmple;icmpgt,icmpge;acmpe,acmpne> // 整型比较,引用相等性判断
- if<eq,lt,le,gt,ge,null,nonnull> // 搭配其他类型的比较运算指令使用
方法调用与返回指令
- invokevirtual // 根据对象的实际类型进行分派,调用对应的方法(比如继承后方法重写)
- invokespecial // 调用特殊方法,如 <cint>()V, <init>()V 等初始化方法、私有方法、父类方法
- invokestatic // 调用类的静态方法
- invokeinterface // 调用接口方法(实现接口的类对象,但被声明为接口类型,调用方法)
- invokedynamic // TODO
- Treturn, return // 返回指定类型,返回 void
异常处理指令:athrow 抛出异常,异常处理则由 exception_table 描述
同步指令:synchronized 对象锁由 monitorenter, monitorexit 搭配对象的 monitor 锁共同实现
「1. 加载」
原理:委托 ClassLoader 读取 Class 二进制字节流,载入到方法区内存,并在堆内存中生成对应的java.lang.Class对象相互引用
「2. 验证」
校验字节流确保符合 Class 文件格式,执行语义分析确保符合 Java 语法,校验字节码指令合法性
「3. 准备」
在堆中分配类变量(static)内存并初始化为零值,主义还没到执行 putstatic 指令赋值的初始化阶段,但静态常量属性除外:
- public class ClassX {
- final static int n = 2; // 常量的值在编译期就已知,准备阶段完成赋值,值存储在 ConstantValue
- final static String str = "str"; // 字符串静态常量同理
- }
-
- static final java.lang.String str;
- descriptor: Ljava/lang/String;
- flags: ACC_STATIC, ACC_FINAL
- ConstantValue: String str
「4. 解析」
将常量池中的符号引用(Class_info, Fieldref_info, Methodref_info)替换为直接引用(内存地址)
「5. 初始化」
javac 会从上到下合并类中 static 变量赋值、static 语句块,生成类构造器()V,在初始化阶段执行,此方法的执行由 JVM 保证线程安全;注意 JVM 规定有且仅有的,会立即触发对类初始化的六种 case
- public class ClassX {
- static {
- println("main class ClassX init"); // 1. main() 所在的主类,总是先被初始化
- }
-
- public static void main(String[] args) throws Exception {
- // 首次会触发类的初始化
- // SubX b = new SubX(); // new 对象 // 2. new, getsatic, putstatic, invokestatic 指令
- // println(SuperX.a); // 读写类的 static 变量,或调用 static 方法
- // println(SubX.c); // 3. 子类初始化,会触发父类初始化
- // println(SubX.a); // 子类访问父类的静态变量,只会触发父类初始化
-
- // 不会触发类的初始化
- // println(SubX.b); // 1. 访问类的静态常量(基本类型、字符串字面量)
- // println(SubX.class); // 2. 访问类对象
- // println(new SubX[2]); // 3. 创建类的数组
- }
- }
-
- class SuperX {
- static int a = 0;
- static {
- println("class SuperX initiated");
- }
- }
-
- class SubX extends SuperX {
- final static double b = 0.1;
- static boolean c = false;
- static {
- println("class SubX initiated");
- }
- }
层级关系
双亲委派机制
原理:一个类加载器收到加载某个类的请求时,会先委派上层的父类加载器去加载,逐层向上,当父类加载器逐层向下反馈都无法加载此类后,该类加载器才会尝试自己加载;此模型保证了,诸如 rt.jar 中的java.lang.Object类,不论在底层哪种类加载器中都一定是被 Bootstrap 类加载器加载, JVM 中仅此一份,保证了一致性
实现
- // java/lang/ClassLoader
- protected Class<?> loadClass(String name, boolean resolve) throws ClassNotFoundException {
- synchronized (getClassLoadingLock(name)) {
- // 1. 先检查自己的加载器是否已加载此类
- Class<?> c = findLoadedClass(name);
- if (c == null) {
- long t0 = System.nanoTime();
- try {
- if (parent != null) {
- // 2. 还有上层则委派给上层去加载
- c = parent.loadClass(name, false);
- } else {
- // 3. 如果没有上级,则委派给 Bootstrap 加载
- c = findBootstrapClassOrNull(name);
- }
- } catch (ClassNotFoundException e) {
- // 类不存在
- }
-
- if (c == null) {
- // 4. 到自己的 classpath 中查找类,用户自定义 ClassLoader 自定义了查找规则
- long t1 = System.nanoTime();
- c = findClass(name);
- }
- }
- if (resolve) {
- resolveClass(c);
- }
- return c;
- }
- }
- public static void main(String[] args) {
- int a = 1008611;
- int b = ++a;
- }
对应运行时栈帧结构:
局部变量表:大小在编译期确定,用于存放实参和局部变量,以大小为 32 bit 的变量槽为最小单位
long, double 类型被切分为 2 个 slot 同时读写(单线程操作,无线程安全问题)
类对象调用方法时,slot 0 固定为当前对象的引用,即this隐式实参
变量槽有重用优化,当 pc 指令超出某个槽中的变量的作用域时,该槽会被其他变量重用
- public static void main(String[] args) {
- {
- byte[] buf = new byte[10 * 1024 * 1024];
- }
- System.gc(); // buf 还在局部变量表的 slot 0 中,作为 GC Root 无法被回收
- // int v = 0; // 变量 v 重用 slot 0,gc 生效
- // System.gc();
操作数栈:最大深度在编译期确定,与局部变量表配合入栈、执行指令、出栈来执行字节码指令
返回地址:遇到return 族指令则正常调用完成,发生异常但异常表中没有对应的 handler 则异常调用完成;正常退出到上层方法后,若有返回值则压入栈,并将程序计数器恢复到方法调用指令的下一条指令
「1. 虚方法、非虚方法」非虚方法:编译期可知(程序运行前就唯一确定)、且运行期不可变的方法,在类加载阶段就会将方法的符号引用解析为直接引用。有 5 种:
静态方法(与类唯一关联):invokestatic调用
私有方法(外部不可访问)、构造器方法、父类方法:invokespecial调用
final 方法(无法被继承):由invokevirtual调用(历史原因)
- public class StaticResolution {
- public static void doFunc() {
- System.out.println("do func...");
- }
- public static void main(String[] args) {
- StaticResolution.doFunc();
- }
- }
-
- stack=0, locals=1, args_size=1 // 静态方法的调用版本,在编译时就以常量的形式,存入字节码的参数
- 0: invokestatic #5 // Method doFunc:()V
- 3: return
虚方法:需在运行时动态确定直接引用的方法,由invokevirtual, invokeinterface调用
「2. 静态分派、动态分派」背景:方法可被重载(参数类型不同,或数量不同)、可被重写(子类继承后覆盖)
分派:对象可声明为类、父类、实现的接口等类型,当对象作为实参或调用方法时,需根据其静态类型或实际类型,才能确定要调用的方法的版本,进而确定其直接引用。此过程即方法的分派
reference 变量的 2 种类型
静态类型:变量被声明的类型,不会改变,编译期可知
实际类型:变量指向的对象可被替换,运行时随时可能修改
「静态分派」
原理:方法重载时,依赖参数的静态类型,来确定要使用哪个重载版本的方法
特点:发生在编译阶段,由 javac 确定类型“匹配度最高的”重载版本,来作为invokevirtual的参数
- public class StaticDispatch {
- static abstract class Human {}
- static class Man extends Human {}
- static class Woman extends Human { }
-
- public void f(Human human) {System.out.println("f(Human)");}
- public void f(Man man) {System.out.println("f(Man)");}
- public void f(Woman woman) {System.out.println("f(Woman)");}
-
- public static void main(String[] args) {
- Human man = new Man(); // 静态类型都是 Human
- Human woman = new Woman(); // 实际类型分别为 Man, Woman
- StaticDispatch sd = new StaticDispatch();
- sd.f(man); // f(Human) // invokevirtual #13 // Method f:(Lcom/ch08/StaticDispatch$Human;)V
- sd.f(woman); // f(Human) // 编译期就已确定重载版本,写入字节码中
- }
- }
「动态分派」
原理:方法重写时,依赖 Receiver 对象的实际类型,来确定要使用哪个类版本的方法
特点:发生在运行时,依赖invokevirtual指令来确定调用方法的版本,进而实现多态,解析流程为
注:类的方法查找是高频操作,JVM 会在方法区中为类建一张虚方法表 vtable,以实现方法的快速查找
- public class DynamicDispatch {
- static abstract class Human {
- protected abstract void f();
- }
-
- static class Man extends Human {
- @Override
- protected void f() {
- System.out.println("Man f()");
- }
- }
-
- static class Woman extends Human {
- @Override
- protected void f() {
- System.out.println("Woman f()");
- }
- }
-
- public static void main(String[] args) {
- Human man = new Man(); // 虽然静态类型都是 Human
- Human woman = new Woman();
- man.f(); // Man f() // invokevirtual #6 // Method com/ch08/DynamicDispatch$Human.f:()V
- woman.f(); // Woman f() // 虽然字节码指令的参数,都是静态类型方法的符号引用
- man = new Woman();
- man.f(); // Woman f() // 但 invokevirtual 会根据 Receiver 实际类型,在运行时解析到实际类的直接引用
- }
- }
注意,类的字段读写指令getfield, putfield没有invokevirtual的动态分派机制,即子类的同名字段会直接覆盖父类的字段。示例:
- public class FieldHasNoPolymorphic {
- static class Father {
- public int money = 1;
- public Father() {
- money = 2;
- showMoney();
- }
- public void showMoney() { System.out.println("Father, money = " + money); }
- }
-
- static class Son extends Father {
- public int money = 3; // 子类字段在类加载的准备阶段被赋零值
- public Son() { // 子类构造器第一行默认隐藏调用 super()
- money = 4;
- showMoney();
- }
- public void showMoney() { System.out.println("Son, money = " + money); }
- }
-
- public static void main(String[] args) {
- Father guy = new Son();
- System.out.println("guy, money = " + guy.money);
- }
- }
-
- // Son, money = 0 // Father 类构造器执行,动态分派执行了 Son::showMoney()
- // Son, money = 4 // Son 类构造器中访问最新的、自己的 money 字段
- // guy, money = 2 // 字段的读写没有动态分派,静态类型是谁,就访问谁的字段
「3. 单分派、多分派」方法的 Receiver,与方法的参数,都是方法的宗量,根据一个宗量来选择目标方法称为单分派,需要多个宗量才能确定方法的叫多分派
静态分派机制会让编译器在编译阶段,对重载的多个方法,会选出参数匹配度最高的作为目标方法
动态分派机制在运行时,依赖 Receiver 实际类型,配合invokevirtual定位唯一的实例方法作为目标方法
综上两点,Java 是静态多分派、动态单分派的语言
注明:第 10,11 章讲 Java 的前后端编译,学习了自动装箱等常见语法糖的字节码实现,其余部分待有空搭配龙书一起学;第 12,13 章内容与《Java Concurrency In Practice》等书重合度较高,此处不再赘述
学习《深入理解 JVM 3ed》,初步掌握了 JVM 内存区域的划分模型、GC 算法理论及常见回收器原理、Class 文件结构中各数据项解释、类加载流程、方法的执行与分派等五大方面的知识,收获颇丰。不过大部分都是理论,若有机会还是要研究下 openjdk 的源码实现 。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。