赞
踩
现从fsg_bind()讲起。
- //不失一般性,删掉错误处理和configfs相关代码
- static int fsg_bind(struct usb_configuration *c, struct usb_function *f)
- {
- struct fsg_dev *fsg = fsg_from_func(f);
- struct fsg_common *common = fsg->common;
- struct usb_gadget *gadget = c->cdev->gadget;
- int i;
- struct usb_ep *ep;
- unsigned max_burst;
- int ret;
- struct fsg_opts *opts;
-
- /* Don't allow to bind if we don't have at least one LUN */
- ret = _fsg_common_get_max_lun(common);
-
- opts = fsg_opts_from_func_inst(f->fi);
-
- if (!common->thread_task) {
- common->state = FSG_STATE_IDLE;
- common->thread_task =
- kthread_create(fsg_main_thread, common, "file-storage");
- if (IS_ERR(common->thread_task)) {
- ...
- }
- wake_up_process(common->thread_task);
- }
-
- fsg->gadget = gadget;
-
- /* New interface */
- i = usb_interface_id(c, f);
-
- fsg_intf_desc.bInterfaceNumber = i;
- fsg->interface_number = i;
-
- /* Find all the endpoints we will use */
- ep = usb_ep_autoconfig(gadget, &fsg_fs_bulk_in_desc);
- fsg->bulk_in = ep;
-
- ep = usb_ep_autoconfig(gadget, &fsg_fs_bulk_out_desc);
- fsg->bulk_out = ep;
-
- /* Assume endpoint addresses are the same for both speeds */
- fsg_hs_bulk_in_desc.bEndpointAddress =
- fsg_fs_bulk_in_desc.bEndpointAddress;
- fsg_hs_bulk_out_desc.bEndpointAddress =
- fsg_fs_bulk_out_desc.bEndpointAddress;
-
- /* Calculate bMaxBurst, we know packet size is 1024 */
- max_burst = min_t(unsigned, FSG_BUFLEN / 1024, 15);
-
- fsg_ss_bulk_in_desc.bEndpointAddress =
- fsg_fs_bulk_in_desc.bEndpointAddress;
- fsg_ss_bulk_in_comp_desc.bMaxBurst = max_burst;
-
- fsg_ss_bulk_out_desc.bEndpointAddress =
- fsg_fs_bulk_out_desc.bEndpointAddress;
- fsg_ss_bulk_out_comp_desc.bMaxBurst = max_burst;
-
- ret = usb_assign_descriptors(f, fsg_fs_function, fsg_hs_function,
- fsg_ss_function);
- ...
- return 0;
- }

可以看到该函数主要是通过kthread_create+wake_up_process的组合创建了一个内核线程fsg_main_thread,名称是"file-storage",通过shell的ps可以看到。另外就是利用usb_interface_id()分配一个接口号,填充进接口描述符,以便在设备枚举时返回给usb host,最后利用composite.c框架所创建的gadget对象对U盘的IN/OUT端点初始化:
- //storage_common.c
-
- /*
- * Three
- full-speed endpoint descriptors: bulk-in, bulk-out, and
- * interrupt-in.
- */
- struct usb_endpoint_descriptor fsg_fs_bulk_in_desc = {
- .bLength = USB_DT_ENDPOINT_SIZE,
- .bDescriptorType = USB_DT_ENDPOINT,
-
- .bEndpointAddress = USB_DIR_IN,
- .bmAttributes = USB_ENDPOINT_XFER_BULK,
- /* wMaxPacketSize set by autoconfiguration */
- };
- struct usb_endpoint_descriptor fsg_fs_bulk_out_desc = {
- .bLength = USB_DT_ENDPOINT_SIZE,
- .bDescriptorType = USB_DT_ENDPOINT,
-
- .bEndpointAddress = USB_DIR_OUT,
- .bmAttributes = USB_ENDPOINT_XFER_BULK,
- /* wMaxPacketSize set by autoconfiguration */
- };
-
- /* Find all the endpoints we will use */
- ep = usb_ep_autoconfig(gadget, &fsg_fs_bulk_in_desc);
- fsg->bulk_in = ep;
-
- ep = usb_ep_autoconfig(gadget, &fsg_fs_bulk_out_desc);
- fsg->bulk_out = ep;

因为只有端点(fifo)初始化完,未来才可以利用由usb_ep_queue()传输usb数据,而我们的U盘gadget驱动就利用usb_ep_queue()封装而成以下两个函数用于传输U盘数据:
static bool start_in_transfer(struct fsg_common *common, struct fsg_buffhd *bh);
static bool start_out_transfer(struct fsg_common *common, struct fsg_buffhd *bh);
当然现在只是初始化,U盘还不能正常工作,毕竟现在连fsg_setup()都没有调用!也就是说还没被usb host枚举到,也没有SetConfiguration()等操作。那究竟什么时候调用fsg_setup()回调??
事实上,我们无需关心,因为在composite.c(libcomposite.ko)框架已经帮我们处理好细节了,在composite_setup()函数中被处理,该函数处于中断上下文中,不要放入sleep或者切换调度之类的代码。相当于当我们插入我们的U盘到PC上,它就会在composite_setup()回调我们的fsg_setup()。
fsg_setup()中主要处理了两个Mass Storage Class相关的请求:US_BULK_RESET_REQUEST和US_BULK_GET_MAX_LUN,这些请求都是由usb host(电脑的U盘驱动)下发给U盘的,U盘只有按要求处理即可。
想要深入理解gadget,还是需要仔细阅读libcomposite.c(libcomposite.ko)的实现,否则我们就只会调调gadget的api,以后我再讲解libcomposite.ko和udc驱动的流程。
下面主要分析fsg_main_thread();基本上U盘的所有读写操作都是靠它完成,十分重要的一个函数!
- static int fsg_main_thread(void *common_)
- {
- struct fsg_common *common = common_;
-
- /*
- * Allow the thread to be killed by a signal, but set the signal mask
- * to block everything but INT, TERM, KILL, and USR1.
- */
- allow_signal(SIGINT);
- allow_signal(SIGTERM);
- allow_signal(SIGKILL);
- allow_signal(SIGUSR1);
-
- /* Allow the thread to be frozen */
- set_freezable();
-
- /*
- * Arrange for userspace references to be interpreted as kernel
- * pointers. That way we can pass a kernel pointer to a routine
- * that expects a __user pointer and it will work okay.
- */
- set_fs(get_ds());
-
- /* The main loop */
- while (common->state != FSG_STATE_TERMINATED) {
- if (exception_in_progress(common) || signal_pending(current)) {
- handle_exception(common);
- continue;
- }
-
- if (!common->running) {
- sleep_thread(common, true);
- continue;
- }
-
- if (get_next_command(common))
- continue;
-
- spin_lock_irq(&common->lock);
- if (!exception_in_progress(common))
- common->state = FSG_STATE_DATA_PHASE;
- spin_unlock_irq(&common->lock);
-
- if (do_scsi_command(common) || finish_reply(common))
- continue;
-
- spin_lock_irq(&common->lock);
- if (!exception_in_progress(common))
- common->state = FSG_STATE_STATUS_PHASE;
- spin_unlock_irq(&common->lock);
-
- if (send_status(common))
- continue;
-
- spin_lock_irq(&common->lock);
- if (!exception_in_progress(common))
- common->state = FSG_STATE_IDLE;
- spin_unlock_irq(&common->lock);
- }
-
- spin_lock_irq(&common->lock);
- common->thread_task = NULL;
- spin_unlock_irq(&common->lock);
-
- if (!common->ops || !common->ops->thread_exits
- || common->ops->thread_exits(common) < 0) {
- int i;
-
- down_write(&common->filesem);
- for (i = 0; i < ARRAY_SIZE(common->luns); --i) {
- struct fsg_lun *curlun = common->luns[i];
- if (!curlun || !fsg_lun_is_open(curlun))
- continue;
-
- fsg_lun_close(curlun);
- curlun->unit_attention_data = SS_MEDIUM_NOT_PRESENT;
- }
- up_write(&common->filesem);
- }
-
- /* Let fsg_unbind() know the thread has exited */
- complete_and_exit(&common->thread_notifier, 0);
- }

它先是声明可以被信号kill调该内核线程,以及能冻结,譬如kiill -STOP、kill -CONT之类的。它主要是靠如下几个函数工作:get_next_command(common)
do_scsi_command(common) || finish_reply(common)
和send_status(common)
Bulk only 的传输协议可阅读《usbmassbulk_10.pdf》文档,下面只是截取其中一部分:
和
以及阅读SCSI命令文档。本U盘gadget只是实现其中一些常用的SCSI命令子集而已,我们就挑读(READ_10)和写(WRITE_10)这两个操作:
和
可以看到主要是do_read和do_write。因为流程比较繁杂,这里只简单描述,有兴趣的朋友可以逐行代码分析研究,do_write()是通过start_out_transfer()从usb host获取到文件数据,然后调用vfs_write()写入文件系统,完成了将文件写入U盘的过程;而do_read()则是先通过vfs_read()从文件系统(加载驱动时指定的文件路径file=filename[,filename...])中读取文件,然后调用start_in_transfer()写入usb host,完成了读取U盘内的文件到PC。
终于把U盘gadget驱动讲解了一遍,当然只是粗略走读了一下,代码细节上还是需要大家仔细研究,譬如没有深入到composite.c(libcomposite.ko)gadget框架的具体实现,U盘方面也没有细节到每个SCSI命令的讲解,以及没有讲解CBW/CSW的细节处理(有兴趣可以对照《usbmassbulk_10.pdf》阅读代码)等。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。