当前位置:   article > 正文

微带线的ABCD矩阵的推导、转换与级联-Matlab计算实例_s参数db转换成abcd矩阵

s参数db转换成abcd矩阵

微带线的ABCD矩阵的推导、转换与级联-Matlab计算实例

散射参数矩阵有实际的物理意义,但是其无法级联计算,但是ABCD参数和传输散射矩阵可以级联计算,在此先简单介绍ABCD参数矩阵的基本用法。

1、微带线的ABCD矩阵的推导

在这里插入图片描述

其他的一些常用的二端口器件的ABCD矩阵:
在这里插入图片描述

2、ABCD矩阵的转换

ABCD和S参数、Z参数、Y参数的转换关系:
在这里插入图片描述

3、基于ABCD矩阵的微带线级联计算

使用5、电路综合-超酷-基于S11参数直接综合出微带线电路图中的4、电路生成 案例2—基于策动点阻抗函数综合多微带电路中的一个例子进行计算,电路拓扑如下:
在这里插入图片描述
分别计算每个微带线的ABCD矩阵,随后将三个ABCD矩阵相乘,再通过转换关系就可以得到对应的S参数矩阵了,使用代码实现如下过程(ABCD矩阵分析时每个微带线的长度和阻抗都可以任意设置,相当于做了一个电路仿真的代码,但是之前基于理查德分析的每段微带线的长度必须相同):

close all
clear
clc
% 微带线特性阻抗
Z_TL1=2;
Z_TL2=3;
Z_TL3=5;

% 微带线电长度
ELE_L_TL1=60;
ELE_L_TL2=60;
ELE_L_TL3=60;
% 使用1GHZ的微带线
f=1e9;
Z0=1;


%求解频率范围,单位GHz
f_start=0.01;
f_stop=10;
f_step=0.01;
%光速
c=299792458;
%求解范围
freq_solve=[f_start:f_step:f_stop]*1e9;
%计算物理长度,单位m
l_TL1=ELE_L_TL1/360*c/f;
l_TL2=ELE_L_TL2/360*c/f;
l_TL3=ELE_L_TL3/360*c/f;

%计算不同频率下的相移常数beta
beta=2*pi*freq_solve/c;
% %转换到lamda域
% theta=(beta*l);
syms theta1 theta2 theta3
% 构建ABCD矩阵
ABCD_TL1=[cos(theta1),1j*Z_TL1*sin(theta1);1j*sin(theta1)/Z_TL1 cos(theta1)];
ABCD_TL2=[cos(theta2),1j*Z_TL2*sin(theta2);1j*sin(theta2)/Z_TL2 cos(theta2)];
ABCD_TL3=[cos(theta3),1j*Z_TL3*sin(theta3);1j*sin(theta3)/Z_TL3 cos(theta3)];
% 构建ABCD矩阵级联
ABCD=ABCD_TL1*ABCD_TL2*ABCD_TL3;
A=ABCD(1,1);B=ABCD(1,2);C=ABCD(2,1);D=ABCD(2,2);
% ABCD矩阵转换为S参数
S11=(A+B/Z0-C*Z0-D)/(A+B/Z0+C*Z0+D);
% 带入计算
S11=subs(S11,{theta1 theta2 theta3},{beta*l_TL1 beta*l_TL2 beta*l_TL3});
S11=double(S11);
% 画图
plot(freq_solve,20*log10(abs(S11)))

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50

S11的运行结果如下,和实际的一致:
在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/2023面试高手/article/detail/253129
推荐阅读
相关标签
  

闽ICP备14008679号