赞
踩
初始化DataLoader类时必须注入一个参数dataset,而dataset为自己定义。DataSet类可以继承,但是必须重载__len__()和__getitem__
使用Pytoch封装的DataLoader有以下好处:
①可以自动实现多进程加载
②自动惰性加载,不会占用过多内存
③封装有数据预处理和数据增强等操作,避免重复造轮子
以Faster R-CNN为例,一般建议至少传入以下参数,方便后续使用:
- class FRCNNDataset(Dataset):
- def __init__(self, annotation_lines, input_shape = [600, 600], train = True):
- self.annotation_lines = annotation_lines #数据集列表
- self.length = len(annotation_lines) #数据集大小
- self.input_shape = input_shape #输出尺寸
- self.train = train #是否训练
然后重载__len__()和__getitem__
- def __len__(self):
- return self.length #直接返回长度
- def __getitem__(self, index):
- index = index % self.length
-
- #训练时候对数据进行随机增强,但验证时不进行
- image, y = self.get_random_data(self.annotation_lines[index], self.input_shape[0:2], random = self.train)
- #将图片转换成矩阵
- image = np.transpose(preprocess_input(np.array(image, dtype=np.float32)), (2, 0, 1))
-
- #编码先验框
- box_data = np.zeros((len(y), 5))
- if len(y) > 0:
- box_data[:len(y)] = y
-
- box = box_data[:, :4]
- label = box_data[:, -1]
- return image, box, label
关于数据增强函数get_random_data(),其中还包含了对图片的无变形缩放功能
- def get_random_data(self, annotation_line, input_shape, jitter=.3, hue=.1, sat=0.7, val=0.4, random=True):
- # 数据经过处理后格式为:地址——(空格)——预测框,使用split函数即可切割出地址和先验框
- line = annotation_line.split()
- # 读取图像并转换为RGB格式
- image = Image.open(line[0])
- image = cvtColor(image)
- # 获得图像的高宽与目标高宽
- iw, ih = image.size
- h, w = input_shape
- # 读取先验框
- box = np.array([np.array(list(map(int,box.split(',')))) for box in line[1:]])
仅缩放的无变形缩放功(非训练模式)
- # 在不进行随机数据增强的情况下(非训练模式),直接变形后输出
- if not random:
- #获取变形比例
- scale = min(w/iw, h/ih)
- nw = int(iw*scale)
- nh = int(ih*scale)
- dx = (w-nw)//2
- dy = (h-nh)//2
- # 将图像多余的部分加上灰条
- image = image.resize((nw,nh), Image.BICUBIC)
- new_image = Image.new('RGB', (w,h), (128,128,128))
- new_image.paste(image, (dx, dy))
- image_data = np.array(new_image, np.float32)
- # 对真实框进行调整
- if len(box)>0:
- np.random.shuffle(box)
- box[:, [0,2]] = box[:, [0,2]]*nw/iw + dx
- box[:, [1,3]] = box[:, [1,3]]*nh/ih + dy
- box[:, 0:2][box[:, 0:2]<0] = 0
- box[:, 2][box[:, 2]>w] = w
- box[:, 3][box[:, 3]>h] = h
- box_w = box[:, 2] - box[:, 0]
- box_h = box[:, 3] - box[:, 1]
- box = box[np.logical_and(box_w>1, box_h>1)] # discard invalid box
- #返回图片和先验框
- return image_data, box
带数据增强的无变形缩放(训练模式)
- # 对图像进行缩放并且进行长和宽的扭曲
- new_ar = iw/ih * self.rand(1-jitter,1+jitter) / self.rand(1-jitter,1+jitter)
- scale = self.rand(.25, 2)
- if new_ar < 1:
- nh = int(scale*h)
- nw = int(nh*new_ar)
- else:
- nw = int(scale*w)
- nh = int(nw/new_ar)
- image = image.resize((nw,nh), Image.BICUBIC)
-
- # 将图像多余的部分加上灰条
- dx = int(self.rand(0, w-nw))
- dy = int(self.rand(0, h-nh))
- new_image = Image.new('RGB', (w,h), (128,128,128))
- new_image.paste(image, (dx, dy))
- image = new_image
-
- # 翻转图像
- flip = self.rand()<.5
- if flip: image = image.transpose(Image.FLIP_LEFT_RIGHT)
-
- image_data = np.array(image, np.uint8)
-
- # 对图像进行色域变换
- # 计算色域变换的参数
- r = np.random.uniform(-1, 1, 3) * [hue, sat, val] + 1
-
- # 将图像转到HSV上
- hue, sat, val = cv2.split(cv2.cvtColor(image_data, cv2.COLOR_RGB2HSV))
- dtype = image_data.dtype
-
- # 应用变换
- x = np.arange(0, 256, dtype=r.dtype)
- lut_hue = ((x * r[0]) % 180).astype(dtype)
- lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
- lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
-
- image_data = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val)))
- image_data = cv2.cvtColor(image_data, cv2.COLOR_HSV2RGB)
-
- # 对真实框进行调整
- if len(box)>0:
- np.random.shuffle(box)
- box[:, [0,2]] = box[:, [0,2]]*nw/iw + dx
- box[:, [1,3]] = box[:, [1,3]]*nh/ih + dy
- if flip: box[:, [0,2]] = w - box[:, [2,0]]
- box[:, 0:2][box[:, 0:2]<0] = 0
- box[:, 2][box[:, 2]>w] = w
- box[:, 3][box[:, 3]>h] = h
- box_w = box[:, 2] - box[:, 0]
- box_h = box[:, 3] - box[:, 1]
- box = box[np.logical_and(box_w>1, box_h>1)]
-
- return image_data, box
关于collate_fn参数
__getitem__一般返回(image,label)样本对,而DataLoader需要一个batch_size用于处理batch样本,以便于批量训练。
默认的default_collate(batch)函数仅能对尺寸一致且batch_size相同的image进行整理,如将(img0,lbl0),(img1,lbl1),(img2,lbl2)整合为([img0,img1,img2],[lbl0,lbl1,lbl2]),如图像中含有box等参数则需要自定义处理
- def frcnn_dataset_collate(batch):
- images = []
- bboxes = []
- labels = []
- for img, box, label in batch:
- images.append(img)
- bboxes.append(box)
- labels.append(label)
- images = torch.from_numpy(np.array(images))
- return images, bboxes, labels
①在__getitem__中不需要获取box值,转而获取标志图png。
- def __getitem__(self, index):
- annotation_line = self.annotation_lines[index]
- name = annotation_line.split()[0]
-
- # 从文件中读取图像
- jpg = Image.open(os.path.join(os.path.join(self.dataset_path, "VOC2007/JPEGImages"), name + ".jpg"))
- png = Image.open(os.path.join(os.path.join(self.dataset_path, "VOC2007/SegmentationClass"), name + ".png"))
-
- # 数据增强
- jpg, png = self.get_random_data(jpg, png, self.input_shape, random = self.train)
-
- jpg = np.transpose(preprocess_input(np.array(jpg, np.float64)), [2,0,1])
- png = np.array(png)
- png[png >= self.num_classes] = self.num_classes
-
- # 转化成one_hot的形式
- # 在这里需要+1是因为voc数据集有些标签具有白边部分
- seg_labels = np.eye(self.num_classes + 1)[png.reshape([-1])]
- seg_labels = seg_labels.reshape((int(self.input_shape[0]), int(self.input_shape[1]), self.num_classes + 1))
-
- return jpg, png, seg_labels
②get_random_data变形时需要对两张图做同样的变换
- if not random:
- iw, ih = image.size
- scale = min(w/iw, h/ih)
- nw = int(iw*scale)
- nh = int(ih*scale)
-
- image = image.resize((nw,nh), Image.BICUBIC)
- new_image = Image.new('RGB', [w, h], (128,128,128))
- new_image.paste(image, ((w-nw)//2, (h-nh)//2))
-
- label = label.resize((nw,nh), Image.NEAREST)
- new_label = Image.new('L', [w, h], (0))
- new_label.paste(label, ((w-nw)//2, (h-nh)//2))
- return new_image, new_label
③collate_fn需要进行修改
- def deeplab_dataset_collate(batch):
- images = []
- pngs = []
- seg_labels = []
- for img, png, labels in batch:
- images.append(img)
- pngs.append(png)
- seg_labels.append(labels)
- images = torch.from_numpy(np.array(images)).type(torch.FloatTensor)
- pngs = torch.from_numpy(np.array(pngs)).long()
- seg_labels = torch.from_numpy(np.array(seg_labels)).type(torch.FloatTensor)
- return images, pngs, seg_labels
- with open(train_annotation_path, encoding='utf-8') as f:
- train_lines = f.readlines()
- with open(val_annotation_path, encoding='utf-8') as f:
- val_lines = f.readlines()
- #获取数据集长度
- num_train = len(train_lines)
- num_val = len(val_lines)
这里一般检查数据集是否足够大,也可不检查
- train_dataset = MyDataset(train_lines, input_shape, anchors, batch_size, num_classes, train = True)
- val_dataset = MyDataset(val_lines, input_shape, anchors, batch_size, num_classes, train = False)
关于dataloader:一般有以下5个参数:
1.dataset:数据集对象,dataset型
2.batch_size:批大小,int型
3.shuffe:每一轮epoch是否重新洗牌,bool型
4.num_workers:多进程读取
5.drop_last:当样本不能被batch_size取整时,是否丢弃最后一批数据,bool型
- gen = DataLoader(train_dataset, shuffle = shuffle, batch_size = batch_size, num_workers = num_workers, pin_memory=True,
- drop_last=True, collate_fn=ssd_dataset_collate, sampler=train_sampler)
- gen_val = DataLoader(val_dataset , shuffle = shuffle, batch_size = batch_size, num_workers = num_workers, pin_memory=True,
- drop_last=True, collate_fn=ssd_dataset_collate, sampler=val_sampler)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。