当前位置:   article > 正文

逻辑回归(logistic regression)原理详解_逻辑回归的基本原理

逻辑回归的基本原理

机器学习解决的问题,大体上就是两种:数值预测和分类。前者一般采用的是回归模型,比如最常用的线性回归;后者的方法则五花八门,决策树,kNN,支持向量机,朴素贝叶斯等等模型都是用来解决分类问题的。其实,两种问题从本质上讲是一样的:都是通过对已有数据的学习,构建模型,然后对未知的数据进行预测,若是连续的数值预测就是回归问题,若是离散的类标号预测,就是分类问题。

这里面有一类比较特殊的算法,就是逻辑回归(logistic regression)。它叫“回归”,可见基本思路还是回归的那一套,同时,逻辑回归又是标准的解决分类问题的模型。换句话说,逻辑回归是用与回归类似的思路解决了分类问题。

1. 阶跃函数

现在有个数据元组,每个数据元组对应了一个类标号,同时每个数据元组个属性。假设现在面临的是一个简单的二分类问题,类标号有0,1两种。如果用简单的回归方法对已知数据进行曲线拟合的话,我们会得到如下的曲线方程(曲线拟合的方法后面会说到):

z=f(X)=w0+w1x1+w2x2++wmxm

注:并不是说逻辑回归只能解决二分类问题,但是用到多分类时,算法并没有发生变化,只是用的次数更多了而已。

实际上,逻辑回归分类的办法与SVM是一致的,都是在空间中找到曲线,将数据点按相对曲线的位置,分成上下两类。也就是说,对于任意测试元组可以根据其正负性而得到类标号。那换句话说,直接依靠拟合曲线的函数值是不能得到类标号的,还需要一种理想的“阶跃函数”,将函数值按照正负性分别映射为0,1类标号。这样的阶跃函数如下表示:

ϕ(z)={0,   z<00.5,   z=01,   z>0

然而,直接这样设计阶跃函数不方便后面的优化计算,因为函数值不连续,无法进行一些相关求导。所以,逻辑回归中,大家选了一个统一的函数,也就是Sigmoid函数,如公式(1)所示:

ϕ(z)=11+ez

Sigmoid函数的图像如下图所示,当

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/2023面试高手/article/detail/279328
推荐阅读
相关标签
  

闽ICP备14008679号