当前位置:   article > 正文

基于内容的图片检索CBIR(Content Based Image Retrieval)简介_content-based image retrieval

content-based image retrieval

传统的图像检索过程,先通过人工对图像进行文字标注,再利用关键字来检索图像,这种依据图像描述的字符匹配程度提供检索结果的方法,简称“以字找图”,既耗时又主观多义。基于内容的图像检索客服“以字找图”方式的不足,直接从待查找的图像视觉特征出发,在图像库(查找范围)中找出与之相似的图像,这种依据视觉相似程度给出图像检索结果的方式,简称“以图找图”。基于内容的图像检索分为三个层次:

(1)依据提取图像本身的颜色、形状、纹理等低层特征进行检索;

(2)基于图像的低层特征,通过识别图像中的对象类别以及对象之间的空间拓扑关系进行检索;

(3)基于图像抽象属性(场景语义、行为语义、情感语义等)的推理学习进行检索;

基于内容的图像检索技术研究的热点可以分为4个方面:

最初的图像检索研究主要集中在如何选择合适的全局特征去描述图像内容和采用什么样的相似性度量方法进行图像匹配。

第二个研究热点是基于区域的图像检索方法,其主要思想是图像分割技术提取出图像中的物体,然后对每个区域使用局部特征来描述,综合每个区域特征可以得到图像的特征描述。这两个研究方向都是以图像为中心,对于用于的需求缺乏分析。

第三个研究热点就是针对这一问题而展开的,借助相关的反馈的思想,根据用户的需求及时调整系统检索时用的特征和相似性度量方法,从而缩小低层特征和高层语义之间的差距。

第四个研究热点是研究如何从多种渠道获取图像语义信息,如何将图像底层特征与图像关键词结合进行图像自动标注以提高检索准确率等。



根据一般图像检索的工作原理可以知道,基于特征的图像检索有3个关键:

(1)选取恰当的图像特征;

(2)采取有效的特征提取方法;

(3)准确的特征匹配算法;

    利用各种特征对图像检索已经取得了相当的发展,大量的检索实验可以表明,综合特征检索要比单一特征检索更符合人类的视觉感受要求,检索效果会更好,但如何去找到合适的权值将多个特征组合起来是非常困难的。目前在CBIR中最常用的特征一般有:颜色特征、形状特征和纹理特征。  

颜色是图像检索中最先被采用的特征,主要方法有:

(1)颜色直方图

(2)颜色一致性矢量(CCV

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/2023面试高手/article/detail/283446
推荐阅读
相关标签
  

闽ICP备14008679号