赞
踩
- # -*- coding: utf-8 -*-
- """
- Created on Wed Sep 6 14:30:24 2017
- @author: 飘的心
- """
-
- from sklearn.datasets import load_digits
- from sklearn.linear_model import LogisticRegression
- from sklearn.model_selection import GridSearchCV
- from sklearn.metrics import classification_report
- from sklearn.model_selection import train_test_split
- from sklearn import metrics
-
- data=load_digits()
- x=data.data
- y=data.target
- x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=0,test_size=0.25,
- stratify=y)
- #采用暴力搜索,所有参数进行组合,然后选择最好的参数
- tuned_parameters=[{'penalty':['l1','l2'],
- 'C':[0.01,0.05,0.1,0.5,1,5,10,50,100],
- 'solver':['liblinear'],
- 'multi_class':['ovr']},
- {'penalty':['l2'],
- 'C':[0.01,0.05,0.1,0.5,1,5,10,50,100],
- 'solver':['lbfgs'],
- 'multi_class':['ovr','multinomial']}]
-
- clf=GridSearchCV(LogisticRegression(tol=1e-6),tuned_parameters,cv=10)
- clf.fit(x_train,y_train)
- print('Best parameters set found:',clf.best_params_)
-
- print(classification_report(y_test,clf.predict(x_test)))
- print(metrics.confusion_matrix(y_test,clf.predict(x_test)))
-
-
- from sklearn.datasets import load_digits
- from sklearn.linear_model import LogisticRegression
- from sklearn.model_selection import RandomizedSearchCV
- from sklearn.metrics import classification_report
- from sklearn.model_selection import train_test_split
- import scipy
-
- digits=load_digits()
- x=digits.data
- y=digits.target
-
- x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=0,test_size=0.25,
- stratify=y)
- #采用随机搜索,给参数一个范围,然后系统随机选择参数,进行检验,然后选择最好的
- tuned_parameters={'C':scipy.stats.expon(scale=100),
- 'multi_class':['ovr','multinomial']}
- clf=RandomizedSearchCV(LogisticRegression(penalty='l2',solver='lbfgs',tol=1e-6),
- tuned_parameters,cv=10,scoring='accuracy',n_iter=100)
-
- clf.fit(x_train,y_train)
- print('best parameters:',clf.best_estimator_)
- print(classification_report(y_test,clf.predict(x_test)))
- print(metrics.confusion_matrix(y_test,clf.predict(x_test)))
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。